총 381개
-
RC & Circuit Simulator 실험 보고서2025.01.221. 축전기(Capacitor) 축전기는 특정한 정전 용량(커패시턴스, Capacitance)을 갖는 회로 소자로, 주로 두 개의 도체판으로 구성되어 있고 사이 공간은 얇은 절연체로 채워져 있다. 커패시턴스는 도체판의 면적을 넓히거나 두 판 사이의 간격을 작게 함으로써 증가한다. 도체판 표면에 전하가 저장되는데, 두 표면에 모이는 전하의 양은 같지만 부호는 반대이다. 2. 용량성 리액턴스(Capacitive reactance) 축전기에서의 전류 흐름을 방해하는 정도를 나타내는 수치로, X_C = -1/wC 로 나타낼 수 있으며 주파...2025.01.22
-
전자회로설계실습 2차 예비보고서2025.05.101. OP Amp의 Offset Voltage 측정 OP Amp의 Offset Voltage를 측정하기 위해 Gain이 100 (V/V)와 1000 (V/V)인 Inverting Amplifier 회로를 설계하고, 두 입력단자를 접지하여 출력전압을 측정한다. 이를 통해 Offset Voltage를 계산할 수 있다. Offset Voltage를 최소화하기 위해 Offset-nulling 단자에 가변저항을 연결하여 조정할 수 있다. 2. OP Amp의 Slew Rate 측정 OP Amp의 Slew Rate를 측정하기 위해 Voltage...2025.05.10
-
전자회로실험 과탑 A+ 예비 보고서 (실험 10 MOSFET 바이어스 회로)2025.01.291. MOSFET 바이어스 회로 MOSFET을 증폭기로 동작시키기 위해서는 적절한 DC 바이어스가 인가되어야 하며, 이때의 DC 바이어스를 동작점 또는 Q점이라고 부른다. DC 바이어스는 증폭기의 전압 이득과 스윙을 결정하는 중요한 역할을 한다. 이 실험에서는 MOSFET을 이용한 증폭기의 DC 동작점을 잡아주기 위한 바이어스 회로에 대해서 공부하고, 실험을 통하여 그 동작을 확인하고자 한다. 2. 게이트 바이어스 회로 게이트 바이어스 회로(실험회로 1)는 가장 기본적인 전압분배 MOSFET 바이어스 회로이다. 이 회로는 소스 단자...2025.01.29
-
전자회로실험 과탑 A+ 결과 보고서 (실험 11 공통 소오스 증폭기)2025.01.291. 공통 소오스 증폭기 회로 공통 소오스 증폭기 회로에서 입력(v_t)은 게이트-소오스 전압(V_GS)이고, 출력(v_o)은 드레인-소오스 전압(V_DS)이다. 게이트-소오스 사이의 소신호 입력 전압에 비례하는 전류가 드레인에 흐르고, 이 전류가 출력 쪽의 저항 R_D에 의해 전압으로 변환되면서 전압을 증폭시킨다. 바이어스 회로를 포함한 공통 소오스 증폭기 회로에서 R_1, R_2, R_S는 게이트에 적절한 바이어스 전압을 제공해 MOSFET이 활성 영역(포화 영역)에서 동작하도록 한다. 2. 공통 소오스 증폭기의 입력-출력 특성...2025.01.29
-
중앙대 전자전기공학부 전자회로설계실습 예비보고서 - OP amp 이용한 다양한 Amp2025.05.021. 센서 측정 및 등가회로 출력신호가 주파수 2kHz의 정현파인 어떤 센서의 출력전압을 오실로스코프(입력임피던스 = 1MΩ)로 직접 측정하였더니 peak to peak 전압이 200mV이고 센서의 부하로 10kΩ 저항을 연결한 후 10kΩ 저항에 걸리는 전압을 역시 오실로스코프로 측정하였더니 peak to peak 전압이 100mV였다. 이를 통해 센서의 Thevenin 등가회로를 구현하기 위해 Function Generator의 출력을 2kHz, 100mV, Offset=0으로 설정해야 한다. 2. Inverting Amplif...2025.05.02
-
capacitor 분해2025.05.121. 적층 세라믹 콘덴서(MLCC) 적층 세라믹 콘덴서(MLCC)는 여러 겹의 세라믹과 금속(니켈) 판이 쌓여 있는 구조를 가지고 있습니다. 이러한 구조를 통해 우수한 고주파 특성과 무극성의 장점을 가지고 있지만, 용량 변화가 크고 결락이 발생할 수 있는 단점이 있습니다. MLCC는 회로에 일정한 전류가 흐르도록 제어하는 핵심 부품으로 휴대폰, LCD TV, 컴퓨터 등 다양한 전자 기기에 사용됩니다. 2. 세라믹 유전체 MLCC에 사용되는 세라믹 유전체는 다양한 종류가 사용됩니다. 이러한 세라믹 유전체는 MLCC의 전압 범위(6.3...2025.05.12
-
트랜지스터 분해2025.05.121. 트랜지스터 트랜지스터는 전자 회로에서 신호 증폭, 스위칭 등의 기능을 수행하는 핵심 부품입니다. 이 자료에서는 npn 트랜지스터의 구조와 원리를 설명하고 있습니다. 트랜지스터는 emitter, collector, base의 3개 단자로 구성되어 있으며, 수지 케이스로 내부 부품을 보호하고 있습니다. 분해 결과 트랜지스터 내부에는 copper frame과 passivated die가 있음을 확인할 수 있었습니다. 1. 트랜지스터 트랜지스터는 현대 전자 기술의 핵심 구성 요소로, 전자 회로의 기본 단위입니다. 트랜지스터는 전기 신...2025.05.12
-
[기초전자실험 with pspice] 01 저항 결과보고서 <작성자 학점 A+>2025.04.281. 저항 실험 실험에 사용한 장비 및 부품은 파워 서플라이, 멀티미터, 고정 저항 6개(1KΩ, 4.7KΩ, 15KΩ, 33KΩ, 100KΩ, 470KΩ), 가변 저항 1개(3KΩ)였다. 고정 저항의 저항값을 측정한 결과, 이론적인 1%의 오차 범위를 넘는 저항들이 있었다. 이는 저항 제조 과정에서 발생한 손상으로 인한 것으로 추정된다. 가변 저항 측정 실험에서도 오차가 발생했는데, 이는 멀티미터의 오차와 측정 시 손이 프로브에 닿은 것이 원인으로 보인다. 실험을 통해 저항의 컬러코드 읽는 법을 익힐 수 있었다. 1. 저항 실험 ...2025.04.28
-
[A+] 중앙대학교 전자회로 설계실습 결과보고서 7. Common Emitter Amplifier의 주파수 특성2025.04.291. Common Emitter Amplifier 본 실험에서는 Common emitter amplifer의 주파수 특성을 측정하였다. 첫 번째 실험에서는 설계실습 06에서 2차 설계를 완료한 common emitter amplifer를 구현하고, Bias를 측정하였다. Bias가 PSPICE의 결과와 오차율 1% 정도의 정확한 값을 보였지만, 는 13.3%의 큰 오차율을 보였고, 이는 [㎂]라는 매우 작은 단위 때문이라 생각하였다. 는 에 의존하므로 동일하게 큰 오차율을 보였다. max min는 2차 설계를 통해 을 연결하여 95...2025.04.29
-
전자회로실험 과탑 A+ 결과 보고서 (실험 9 MOSFET 기본 특성)2025.01.291. NMOS 회로의 전류-전압 특성 NMOS 회로는 공통 소스 증폭기 회로로, 입력 신호가 NMOS 트랜지스터의 게이트에 인가되어 출력 전압을 변조하는 구조다. 게이트와 소스 간 전압 V_GS가 임계 전압 V_th보다 클 때 트랜지스터가 켜져서 드레인에서 소스로 전류가 흐르게 된다. 출력 전압은 V_DD - I_D * R_D로 계산된다. 2. PMOS 회로의 전류-전압 특성 PMOS 회로는 공통 소스 증폭기 회로로, NMOS와는 반대로 동작한다. PMOS는 게이트 전압이 소스 전압보다 낮을 때 턴온된다. 게이트와 소스 간 전압 V...2025.01.29
