총 47개
-
디지털집적회로 NAND, NOR, XOR gate 설계도 및 DC, Transient 시뮬레이션 결과2025.04.281. NAND gate NAND gate의 pull-down 네트워크는 VA와 VB가 모두 높을 때 도통하는 직렬 NMOS 트랜지스터로 구성되며, pull-up 네트워크는 병렬 PMOS 트랜지스터로 구성됩니다. NAND gate의 효과적인 pull-up/pull-down 저항은 단위 인버터의 저항과 같아야 합니다. NMOS 트랜지스터가 직렬로 연결되어 있어 효과적인 저항이 두 배가 되므로 크기가 단위 인버터의 두 배가 되어야 합니다. PMOS의 경우 최악의 경우인 하나의 PMOS만 켜지는 것을 고려하여 단위 인버터와 같은 크기로 설...2025.04.28
-
MOSFET 특성 실험 및 분석2025.11.161. MOSFET 동작 원리 MOSFET은 게이트 전압에 따라 채널이 형성되어 전류가 흐르는 반도체 소자입니다. NMOS와 PMOS는 반대의 극성을 가지며, 각각 Turn-OFF, Triode Region, Saturation Region의 세 가지 동작 영역을 가집니다. 포화 영역에서는 핀치-오프 현상이 발생하고 채널의 유효 길이가 감소합니다. 채널 길이 변조 계수 λ를 고려하면 포화 영역에서도 드레인 전류가 계속 증가하며, 이는 출력 저항 r0로 모델링됩니다. 2. 문턱 전압 및 소자 특성 2N7000 NMOS의 문턱 전압은 2...2025.11.16
-
인하대 VLSI 설계 4주차 XOR2025.05.031. XOR Gate XOR Gate는 두 입력 값이 서로 다른 경우 1을, 서로 같은 경우 0을 출력하는 gate로 배타적 논리합이라고도 한다. 이를 나타내는 진리표를 보면 입력 신호가 서로 같을 경우 0, 서로 다를 경우(배타적인 경우) 1이 출력됨을 알 수 있다. 이 진리표를 토대로 카르노맵을 그려서 입력식을 구하면 X = AB' + A'B가 나온다. 2. Transistor level layout transistor level layout을 그리는 과정을 살펴보면 NMOS network에 A와 B를 직렬 연결해 AB, A'과...2025.05.03
-
MOSFET 기본 특성 및 MOSFET 바이어스 회로 실험 결과 보고서2025.01.291. MOSFET 기본 특성 실험 9에서 NMOS의 문턱 전압이 양수이고 PMOS의 문턱 전압이 음수인 이유를 설명하였습니다. NMOS는 소스와 드레인을 n-type을 사용하고 전류를 흐르게 하는 carrier가 전자이므로 채널에 전류가 흐르려면 문턱 전압이 양수여야 합니다. PMOS에서는 소스와 드레인을 p-type을 사용하고 전류를 흐르게 하는 carrier가 hole이므로 채널에 전류가 흐르려면 NMOS의 역전압이 걸려야 하므로 PMOS의 문턱 전압은 음수여야 합니다. 따라서 NMOS를 낮은 전압 쪽에, PMOS를 높은 전압 ...2025.01.29
-
전자재료물성 실험 및 설계 2 - BJT 및 MOSFET 특성2025.11.181. BJT(양극성 접합 트랜지스터)의 전기적 특성 BJT는 전류 제어용 소자로 PNP, NPN 구조로 나뉜다. 세 개의 전극(이미터, 베이스, 컬렉터)으로 구성되며, 베이스 전류에 의해 컬렉터 전류가 제어된다. BJT는 차단영역, 활성영역, 포화영역, 역활성영역의 네 가지 동작영역을 가지며, 활성영역에서 증폭 기능을 수행한다. 온도 증가에 따라 캐리어 수가 증가하여 전기전도도가 증가하고 문턱전압이 낮아진다. 2. BJT 증폭기 회로의 종류 및 특성 BJT 증폭기는 접지 위치에 따라 공통 이미터(CE), 공통 베이스(CB), 공통 ...2025.11.18
-
디지털집적회로설계 XOR 게이트 레이아웃 설계 및 시뮬레이션2025.11.151. Full CMOS XOR GATE 설계 트랜지스터 레벨에서 CMOS XOR 게이트를 직접 구현한 방식으로, 4개의 PMOS와 4개의 NMOS를 중앙 논리 부분에 사용하고 4개의 인버터를 포함하여 총 12개의 트랜지스터로 구현되었다. Mobility 비율 μn/μp = 2를 만족시키기 위해 wp = 2wn으로 설정하여 pull-up 네트워크의 PMOS 폭을 pull-down 네트워크의 NMOS 폭의 두 배로 디자인했다. 가로 11.46 μm, 세로 12.12 μm의 크기로 면적은 138.90 (μm)²이다. 2. Subcell ...2025.11.15
-
CMOS 인버터 설계 및 특성 분석 실험2025.11.181. CMOS 인버터 설계 공정 CMOS 인버터 설계는 웨이퍼 준비, n-well 형성, 활성 영역 정의, 게이트 형성, S/D 도핑, 어닐링, 컨택 형성, 금속화, 전극 형성 등 10단계의 공정으로 구성된다. 총 7개의 마스크(well, active region, poly, n-select, p-select, contact, metal mask)를 사용하여 미세한 패턴을 형성하고, 각 단계에서 산화막 증착, 식각, 이온 주입, 확산 등의 반도체 공정 기술이 적용된다. 2. 도핑 농도 및 접합 깊이 최적화 NMOS와 PMOS의 도핑...2025.11.18
-
[전자공학응용실험]10주차_6차실험_실험 17 능동 부하가 있는 공통 소오스 증폭기_예비레포트_A+2025.01.291. 능동 부하가 있는 공통 소오스 증폭기 이 실험에서는 전류원 부하를 PMOS 트랜지스터 M2를 이용하여 구현한 공통 소오스 증폭기 회로를 구성하고, 이를 바탕으로 공통 소오소 증폭기의 전압 이득을 구하고자 합니다. 입력에 따라서 M1에 흐르는 전류와 부하에 흐르는 전류가 같아지는 출력을 구할 수 있고, 이를 통해 전달 특성 곡선을 구할 수 있습니다. 1. 능동 부하가 있는 공통 소오스 증폭기 능동 부하가 있는 공통 소오스 증폭기는 전자 회로 설계에서 널리 사용되는 중요한 회로 구조입니다. 이 증폭기는 입력 신호를 증폭하여 출력 ...2025.01.29
-
디지털 VLSI 설계: Dynamic CMOS 회로 설계 및 시뮬레이션2025.11.161. Dynamic CMOS 회로 설계 Dynamic CMOS는 PMOS 풀-업 네트워크와 NMOS 풀-다운 네트워크로 구성된 논리 회로이다. 클록 신호가 0일 때 PMOS가 활성화되어 출력이 1로 충전되고, 클록 신호가 1일 때 NMOS 풀-다운 네트워크가 활성화되어 입력 신호에 따라 출력이 결정된다. Dynamic CMOS는 정적 CMOS와 달리 클록 신호에 의존하므로 타이밍 특성이 중요하며, 직렬 연결 시 특별한 주의가 필요하다. 2. HSPICE 시뮬레이션 및 검증 HSPICE를 이용하여 Dynamic CMOS 회로의 동작을...2025.11.16
-
[전자공학응용실험]10주차_6차실험_실험 17 능동 부하가 있는 공통 소오스 증폭기_결과레포트_A+2025.01.291. 전압 이득 계산 PSpice 계산값에서는 VDD 에 5V 를 인가하였으며, pMOS 소자를 다른 것을 사용하였으므로 DC bias 값이 다르게 나와 전압 이득이 다르게 나오게 되었다. 2. 출력 전압 왜곡 출력 전압의 크기가 크게 되면 Bias point 내에서 swing 하는 것이 아닌 bias point 를 벗어나 swing 하게 되어 출력 파형이 잘리게 되는 clamping 현상이 발생하여 왜곡이 일어나게 된다. 1. 전압 이득 계산 전압 이득 계산은 전자 회로 설계에서 매우 중요한 부분입니다. 전압 이득은 입력 전압과 ...2025.01.29
