총 9,592개
-
마이크로프로세서와 마이크로컨트롤러, AVR의 이해2025.11.191. 마이크로프로세서와 마이크로컨트롤러의 개요 마이크로프로세서는 중앙 처리 장치(CPU)의 핵심 부품으로 복잡한 연산과 데이터 처리를 담당하며 컴퓨터와 서버 같은 고성능 기기에서 사용됩니다. 반면 마이크로컨트롤러는 CPU, 메모리, 입출력 장치가 하나의 칩에 통합된 소형 컴퓨팅 장치로, 가전제품, 자동차, 산업용 기기에서 제어 기능을 수행합니다. 마이크로컨트롤러는 전력 소비가 적고 소형화된 장치에서 효율적으로 작동하며 프로그래밍된 명령어에 따라 반복적인 작업을 수행하는 데 특화되어 있습니다. 2. 마이크로프로세서와 마이크로컨트롤러의...2025.11.19
-
평형상수의 결정 실험 예비레포트2025.11.181. 가역반응과 평형상수 가역반응은 정반응과 역반응이 동시에 일어나는 반응으로, 충분한 시간이 지나면 화학평형에 도달한다. 이때 정반응속도와 역반응속도가 같아져 반응물과 생성물의 농도가 변하지 않는다. 평형상수는 가역반응에서 평형을 이루고 있을 때 반응물과 생성물의 농도 관계를 나타낸 상수이며, 온도가 변하지 않으면 항상 같은 값을 가진다. Fe³⁺와 SCN⁻의 반응에서 평형상수는 Kc=[FeSCN²⁺]/([Fe³⁺][SCN⁻])로 표현된다. 2. 자유에너지와 평형상수의 관계 자유에너지 변화는 ΔG=ΔG°+RTlnQ로 표현되며, 반...2025.11.18
-
기체상수 결정 실험 예비 레포트2025.11.181. 이상기체 상태 방정식 이상기체는 무질서하게 운동하는 원자 또는 분자로 이루어진 가상의 기체로, 구성 입자의 크기가 무시할 정도로 작고 입자 간 상호작용이 없다고 가정합니다. 이상기체 방정식은 PV=nRT로 표현되며, 여기서 P는 압력, V는 부피, n은 몰수, T는 절대온도, R은 기체상수(0.082atm·L/mol·K)입니다. 보일 법칙, 샤를 법칙, 아보가드로 법칙을 통합하여 유도되며, 실제기체는 온도가 높고 압력이 낮을수록 이상기체의 특성을 보입니다. 2. 기체상수 결정 방법 기체상수는 수상치환 방법을 이용하여 결정합니다...2025.11.18
-
기체상수 결정 실험 결과 보고서2025.11.181. 이상기체 상태방정식과 기체상수 이상기체에 적용되는 보일법칙, 샤를법칙, 아보가드로법칙을 하나의 관계식으로 표현한 이상기체 상태방정식(PV=nRT)에서 사용되는 기체상수 R을 실험을 통해 직접 결정하였다. 산소 기체 실험에서 R=0.0608atm·L/mol·K, 이산화탄소 기체 실험에서 R=0.0520atm·L/mol·K를 얻었으며, 이는 표준 조건에서의 이론값 0.082atm·L/mol·K와 비교하여 오차를 보였다. 2. Van der Waals 방정식과 실제기체 보정 이상기체 상태방정식을 실제기체 상태에 맞춰 보정한 Van ...2025.11.18
-
적정법을 이용한 아세트산 활성탄 흡착량 계산2025.11.181. 흡착등온식(Adsorption Isotherm) 활성탄에 의한 아세트산 흡착 특성을 분석하기 위해 Langmuir, Freundlich, Temkin 세 가지 흡착등온식을 적용했다. Langmuir 흡착등온식은 단분자층 흡착을 기반으로 화학적 흡착을 설명하며, Freundlich 흡착등온식은 다분자층 흡착에 사용되고, Temkin 흡착등온식은 물리적 흡착에서 흡착열 감소를 고려한다. 실험 결과 Langmuir 흡착등온선이 가장 선형을 보여 아세트산의 활성탄 흡착이 주로 화학적 흡착임을 확인했다. 2. 적정법(Titration)...2025.11.18
-
활성탄을 이용한 염료 흡착속도 결정 실험2025.11.181. Lambert-Beer 법칙 흡광도는 시료의 농도와 빛이 통과하는 거리에 영향을 받으며, Lambert-Beer 법칙은 A=log(P₀/P)=εbc로 정의된다. 여기서 P₀는 입사광의 광도, P는 투과광의 광도, ε는 몰 흡광계수, b는 빛을 통과하는 시료의 길이, c는 시료의 농도를 의미한다. 이 법칙을 통해 흡광도로부터 용액의 농도를 계산할 수 있으며, 분석화학에서 중요한 기본 원리이다. 2. 유사반응(Pseudo order reaction) 초기 반응물들의 농도 차이가 매우 클 때 사용되는 근사식이다. 유사 1차 반응은 ...2025.11.18
-
활성탄을 이용한 염료 흡착속도 결정 실험2025.11.181. Lambert-Beer 법칙과 UV 분광분석 Lambert-Beer 법칙(A=εbc)을 이용하여 흡광도로부터 용액의 농도를 결정하는 방법을 다룬다. UV/vis 분광 광도계를 600nm 파장에서 사용하여 Acid-blue 25 염료의 흡광도를 측정하고, 몰흡광계수(ε=1.1×10⁴ L/cm·mol)를 구하여 시간에 따른 농도 변화를 추적한다. 이 방법은 묽은 용액 상태에서 정확하게 적용되므로 25ppm 농도로 조정하여 실험을 진행했다. 2. 유사 1차 및 2차 반응 동역학 활성탄의 염료 흡착 반응을 분석하기 위해 유사 1차 반...2025.11.18
-
비중 및 밀도 측정 실험 결과2025.11.181. 비중(Specific Gravity) 측정 비중병을 이용하여 4°C의 표준물질인 물을 기준으로 시료의 비중을 측정하는 방법. 증류수와 에탄올의 혼합용액 5가지를 4°C, 25°C, 40°C의 세 가지 온도에서 측정하여 온도 변화에 따른 비중의 변화를 관찰. 실험 결과 온도가 높아질수록 비중이 감소하며, 에탄올의 함량이 증가할수록 비중이 감소하는 경향을 확인. 2. 밀도(Density) 계산 밀도 = 질량/부피 공식을 이용하여 50ml 비중병에 담긴 시료의 밀도를 계산. 에탄올의 밀도(0.789g/ml)가 물의 밀도(0.997g...2025.11.18
-
비중 및 밀도 측정 실험2025.11.181. 밀도와 비중의 정의 밀도(density)는 단위 부피당의 질량으로 ρ=m/V로 표현되며, 고체>액체>>기체 순서로 크기가 결정된다. 비중(specific gravity)은 기준 물질의 밀도에 대한 어떤 물질의 밀도 비로 SG=ρ/ρref이며 단위가 없다. 고체와 액체의 기준 물질은 4.0°C의 물을 사용하며 이때 밀도는 1.000g/cm³이다. 밀도는 온도와 압력에 따라 변하며, 특히 기체는 온도 상승 시 부피가 커져 밀도가 작아진다. 2. 아르키메데스의 원리와 부력법 물체가 유체 속에 잠기면 중력과 반대 방향의 부력을 받으며...2025.11.18
-
반도체의 최신 기술 동향: AI 반도체와 시스템 반도체2025.11.181. AI 반도체 기술 AI 반도체는 학습과 추론 등 AI 기술에 필요한 연산을 위해 특화된 고성능 반도체로, 인공지능 서비스 구현에 필요한 대규모 연산을 고성능·고전력효율로 실행합니다. 기술 유형으로는 GPU, FPGA, ASIC, 뉴로모픽 등이 있으며, 각각 특정 목적에 최적화되어 있습니다. 차세대 기술로는 NPU(신경처리장치), PIM(메모리 내 처리), 뉴로모픽 반도체 등이 개발 중입니다. 2. 시스템 반도체 vs 메모리 반도체 시스템 반도체는 정보 처리 기능이 주 역할로, 연산, 제어, 변환, 가공 등 폭넓은 역할을 수행합...2025.11.18
