• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

[생활과 수학] 제논의 역설

^^
3 페이지
한컴오피스
최초등록일 2003.11.08 최종저작일 2003.11
3P 미리보기
[생활과 수학] 제논의 역설
  • 미리보기

    소개

    ^^

    목차

    없음

    본문내용

    어떤 양을 무한히 쪼갤 수 있거나 또는 그것이 매우 많은 개수의 쪼갤 수 없는 극소량들의 합으로 이루어져 있다고 가정할 수 있을까? 첫 번째 가정은 그냥 받아들일 수 있을 것처럼 보인다. 그러나 어떤 것을 발견하는데 두 번째 가정을 이용할 때는 자칫 어떤 불합리성을 놓칠 가능성이 있다. 고대 그리스의 수학 학교들이 위의 두 가정을 이용하는 것을 발달시켰다는 증거가 있다. 두 가정 모두가 직면하는 약간의 논리적 문제점이 기원전 5세기경에 엘레아학파의 철학자 제논이 만든 네 개의 역설에 의하여 충격적으로 제기되었다. 수학에 심대한 영향을 끼친 이 역설을 어떤 양을 무한히 쪼갤 수 있다고 가정하든지 또는 많은 개수의 극소량들의 합으로 만들어질 수 있다고 가정하든지 간에 운동은 불가능하다고 주장한다. 우리는 이 역설의 본질을 다음 두 가지로 설명할 수 있다.
    이분법(The Diconotomy):만일 직선을 무한히 쪼갤 수 있다면 운동은 불가능하다. 왜냐하면 직선을 통과하려면 우선 중점을 지나야만 하고 그러기 위해서는 사분점을 지나야 하고 또 그러기 위해서 팔분점을 지나야만 하는 등 무한히 많은 점을 지나야 한다. 따라서 운동은 시작조차 할 수 없다.
    화살(The Arrow):만약 시간이 더 이상 쪼개질수 없는 아주 짧은 순간들로 이루어져 있 다면 움직이는 화살은 항상 정지해 있다. 왜냐하면 매 순간마다 그 화살은 한 고정된 지점에 있기 때문이다. 각 순간에서 이 명제가 참이므로 화살은 결코 움직이지 않는다.
    그 후 제논의 역설에 대한 많은 해설이 주어졌는데 그들 대부분의 각 양이 극히 작다 하더라도 양의 무한개의 합은 무한히 크고 (그림생략), 그 크기가 0인 양의 유한 또는 무한개의 합은 0이라는 (nx0=0, ∞x0=0) 통상적인 직관적 믿음에 도전한 것이었다. 그 역설을 만든 동기가 무엇이었든 간에 그것들의 영향으로 무한소가 그리스 논증기하학에서 배제되었다.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      이 자료를 통해 새로운 인사이트와 지식을 얻을 수 있었습니다. 내용이 풍성하여 과제 작성에 큰 도움이 되었습니다. 계속해서 좋은 자료를 기대합니다! 감사합니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    함께 구매한 자료도 확인해 보세요!

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 09월 03일 수요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    11:23 오후