• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법 (Malicious Insider Detection Using Boosting Ensemble Methods)

11 페이지
기타파일
최초등록일 2025.07.16 최종저작일 2022.04
11P 미리보기
앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔒 내부자 보안 위협에 대한 혁신적인 기계학습 접근법 제시
    • 📊 앙상블 학습을 통한 악의적 내부자 탐지 성능 향상 방법론 제공
    • 🚀 98% 이상의 높은 정확도를 달성한 실증적 연구 결과

    미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 32권 / 2호 / 267 ~ 277페이지
    · 저자명 : 박수연

    초록

    최근 클라우드 및 원격 근무 환경의 비중이 증가함에 따라 다양한 정보보안 사고들이 발생하고 있다. 조직의 내부자가 원격 접속으로 기밀 자료에 접근하여 유출을 시도하는 사례가 발생하는 등 내부자 위협이 주요 이슈로 떠오르게 되었다. 이에 따라 내부자 위협을 탐지하기 위해 기계학습 기반의 방법들이 제안되고 있다. 하지만, 기존의 내부자 위협을 탐지하는 기계학습 기반의 방법들은 편향 및 분산 문제와 같이 예측 정확도와 관련된 중요한 요소를 고려하지 않았으며 이에 따라 제한된 성능을 보인다는 한계가 있다. 본 논문에서는 편향 및 분산을 고려하는 부스팅 유형의 앙상블 학습 알고리즘들을 사용하여 악의적인 내부자 탐지 성능을 확인하고 이에 대한 면밀한 분석을 수행하며, 데이터셋의 불균형까지도 고려하여 최종 결과를 판단한다. 앙상블 학습을 이용한 실험을 통해 기존의 단일 학습 모델에 기반한 방법에서 나아가, 편향-분산 트레이드오프를 함께 고려하며 유사하거나 보다 높은 정확도를 달성함을 보인다. 실험 결과에 따르면 배깅과 부스팅 방법을 사용한 앙상블 학습은 98% 이상의 정확도를 보였고, 이는 사용된 단일 학습 모델의 평균 정확도와 비교하면 악의적인 내부자 탐지 성능을 5.62% 향상시킨다.

    영어초록

    Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 08일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:49 오후