• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

오토인코더를 사용한 이상탐지 모델의 비교분석 및 이상치 판별 기준 제안 (Comparative Analysis of Anomaly Detection Models using AE and Suggestion of Criteria for Determining Outliers)

8 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2021.08
8P 미리보기
오토인코더를 사용한 이상탐지 모델의 비교분석 및 이상치 판별 기준 제안
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 실용성
    • 신뢰성
    • 유사도 지수
      참고용 안전
    • 🔬 제조 공정의 이상 탐지를 위한 최신 AI 모델 비교 분석 제공
    • 💡 실제 현장에서 적용 가능한 구체적인 이상치 판별 기준 제시
    • 📊 다양한 오토인코더 모델의 성능을 정량적으로 평가

    미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 26권 / 8호 / 23 ~ 30페이지
    · 저자명 : 강건하, 손정모, 심건우

    초록

    본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다.
    이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point) 의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.

    영어초록

    In this study, we present a comparative analysis of major autoencoder(AE)-based anomaly detection methods for quality determination in the manufacturing process and a new anomaly discrimination criterion. Due to the characteristics of manufacturing site, anomalous instances are few and their types greatly vary. These properties degrade the performance of an AI-based anomaly detection model using the dataset for both normal and anomalous cases, and incur a lot of time and costs in obtaining additional data for performance improvement.
    To solve this problem, the studies on AE-based models such as AE and VAE are underway, which perform anomaly detection using only normal data. In this work, based on Convolutional AE, VAE, and Dilated VAE models, statistics on residual images, MSE, and information entropy were selected as outlier discriminant criteria to compare and analyze the performance of each model. In particular, the range value applied to the Convolutional AE model showed the best performance with AUC PRC 0.9570, F1 Score 0.8812 and AUC ROC 0.9548, accuracy 87.60%. This shows a performance improvement of an accuracy about 20%P(Percentage Point) compared to MSE, which was frequently used as a standard for determining outliers, and confirmed that model performance can be improved according to the criteria for determining outliers.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:53 오후