PARTNER
검증된 파트너 제휴사 자료

다변량 퍼지 의사결정트리와 사용자 적응을 이용한 손동작 인식 (Hand Gesture Recognition Using Multivariate Fuzzy Decision Tree and User Adaptation)

10 페이지
기타파일
최초등록일 2025.05.27 최종저작일 2008.06
10P 미리보기
다변량 퍼지 의사결정트리와 사용자 적응을 이용한 손동작 인식
  • 미리보기

    서지정보

    · 발행기관 : 한국로봇학회
    · 수록지 정보 : 로봇학회 논문지 / 3권 / 2호 / 81 ~ 90페이지
    · 저자명 : 전문진, 도준형, 이상완, 박광현, 변증남

    초록

    While increasing demand of the service for the disabled and the elderly people, assistive
    technologies have been developed rapidly. The natural signal of human such as voice or gesture has
    been applied to the system for assisting the disabled and the elderly people. As an example of such kind
    of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in
    KAIST[1]. This system is a vision-based hand gesture recognition system for controlling home
    appliances such as television, lamp and curtain. One of the most important technologies of the system is
    the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition
    rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be
    handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT)
    learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new
    user, the most proper recognition model among several well trained models is selected using model
    selection algorithm and incrementally adapted to the user’s hand gesture. For the general performance
    of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository.
    For the performance of hand gesture recognition, we tested using hand gesture data which is collected
    from 10 people for 15 days. The experimental results show that the classification and user adaptation
    performance of proposed algorithm is better than general fuzzy decision tree.

    영어초록

    While increasing demand of the service for the disabled and the elderly people, assistive
    technologies have been developed rapidly. The natural signal of human such as voice or gesture has
    been applied to the system for assisting the disabled and the elderly people. As an example of such kind
    of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in
    KAIST[1]. This system is a vision-based hand gesture recognition system for controlling home
    appliances such as television, lamp and curtain. One of the most important technologies of the system is
    the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition
    rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be
    handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT)
    learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new
    user, the most proper recognition model among several well trained models is selected using model
    selection algorithm and incrementally adapted to the user’s hand gesture. For the general performance
    of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository.
    For the performance of hand gesture recognition, we tested using hand gesture data which is collected
    from 10 people for 15 days. The experimental results show that the classification and user adaptation
    performance of proposed algorithm is better than general fuzzy decision tree.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 14일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:12 오전