PARTNER
검증된 파트너 제휴사 자료

동계적 정보기반 계층적 퍼지-러프 분류기법 (Statistical information-based hierarchical fuzzy-rough classification approach)

7 페이지
기타파일
최초등록일 2025.05.06 최종저작일 2007.12
7P 미리보기
동계적 정보기반 계층적 퍼지-러프 분류기법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 17권 / 6호 / 792 ~ 798페이지
    · 저자명 : 손창식, 서석태, 정환묵, 권순학

    초록

    본 논문에서는 학습기법을 사용하지 않고 패턴분류의 성능을 최대화하면서 규칙의 수를 줄일 수 있는 통계적 정보기반 계층적 퍼지-러프 분류방법을 제안한다. 제안된 방법에서 통계적 정보는 계층적 퍼지-러프 분류 시스템에서 각 계층의 입력부 퍼지집합의 분할 구간을 추출하기 위해서 사용되었고, 러프집합은 통계적 정보로부터 추출된 분할 구간들과 연관된 퍼지 if-then 규칙의 수를 최소화하기 위해서 사용되었다. 제안된 방법의 효과성을 보이기 위해 Fisher의 IRIS 데이터를 사용한 기존 패턴분류 방법의 분류 정확도와 규칙들의 수를 비교하였다. 그 결과, 제안된 방법은 기존 방법들의 분류 성능과 유사함을 확인할 수 있었다.

    영어초록

    In this paper, we propose a hierarchical fuzzy-rough classification method based on statistical information for maximizing the performance of pattern classification and reducing the number of rules without learning approaches such as neural network, genetic algorithm. In the proposed method, statistical information is used for extracting the partition intervals of antecedent fuzzy sets at each layer on hierarchical fuzzy-rough classification systems and rough sets are used for minimizing the number of fuzzy if-then rules which are associated with the partition intervals extracted by statistical information. To show the effectiveness of the proposed method, we compared the classification results(e.g. the classification accuracy and the number of rules) of the proposed with those of the conventional methods on the Fisher's IRIS data. From the experimental results, we can confirm the fact that the proposed method considers only statistical information of the given data is similar to the classification performance of the conventional methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 30일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:31 오후