• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구 (Utilizing Unlabeled Documents in Automatic Classification with Inter-document Similarities)

21 페이지
기타파일
최초등록일 2025.05.05 최종저작일 2007.03
21P 미리보기
문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 24권 / 1호 / 251 ~ 271페이지
    · 저자명 : 김판준, 이재윤

    초록

    문헌간 유사도를 자질로 사용하는 분류기에서 미분류 문헌을 학습에 활용하여 분류 성능을 높이는 방안을 모색해보았다. 자동분류를 위해서 다량의 학습문헌을 수작업으로 확보하는 것은 많은 비용이 들기 때문에 미분류 문헌의 활용은 실용적인 면에서 중요하다. 미분류 문헌을 활용하는 준지도학습 알고리즘은 대부분 수작업으로 분류된 문헌을 학습데이터로 삼아서 미분류 문헌을 분류하는 첫 번째 단계와, 수작업으로 분류된 문헌과 자동으로 분류된 문헌을 모두 학습 데이터로 삼아서 분류기를 학습시키는 두 번째 단계로 구성된다. 이 논문에서는 문헌간 유사도 자질을 적용하는 상황을 고려하여 두 가지 준지도학습 알고리즘을 검토하였다. 이중에서 1단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성에만 활용하므로 간단하며, 2단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성과 함께 학습 예제로도 활용하는 알고리즘이다. 지지벡터기계와 나이브베이즈 분류기를 이용한 실험 결과, 두 가지 준지도학습 방식 모두 미분류 문헌을 활용하지 않는 지도학습 방식보다 높은 성능을 보이는 것으로 나타났다. 특히 실행효율을 고려한다면 제안된 1단계 준지도학습 방식이 미분류 문헌을 활용하여 분류 성능을 높일 수 있는 좋은 방안이라는 결론을 얻었다

    영어초록

    This paper studies the problem of classifying documents with labeled and unlabeled learning data, especially with regards to using document similarity features. The problem of using unlabeled data is practically important because in many information systems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. There are two steps in general semi-supervised learning algorithm. First, it trains a classifier using the available labeled documents, and classifies the unlabeled documents. Then, it trains a new classifier using all the training documents which were labeled either manually or automatically. We suggested two types of semi-supervised learning algorithm with regards to using document similarity features. The one is one step semi-supervised learning which is using unlabeled documents only to generate document similarity features. And the other is two step semi-supervised learning which is using unlabeled documents as learning examples as well as similarity features. Experimental results, obtained using support vector machines and naive Bayes classifier, show that we can get improved performance with small labeled and large unlabeled documents then the performance of supervised learning which uses labeled-only data. When considering the efficiency of a classifier system, the one step semi-supervised learning algorithm which is suggested in this study could be a good solution for improving classification performance with unlabeled documents.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:06 오전