PARTNER
검증된 파트너 제휴사 자료

인공신경망을 활용한 석탄회 CLSM의일축압축강도 및 Flow 예측 (The Prediction of Flow and Strength of Controlled Low-Strength Material Using Artificial Neural Networks)

20 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2013.08
20P 미리보기
인공신경망을 활용한 석탄회 CLSM의일축압축강도 및 Flow 예측
  • 미리보기

    서지정보

    · 발행기관 : 한양대학교 우리춤연구소
    · 수록지 정보 : 예술과 과학기술 / 9권 / 3호 / 164 ~ 183페이지
    · 저자명 : 임소영, 천병식

    초록

    최근 환경에 대한 인식이 높아지는 가운데 정부는 2008년 주요 정책으로 저탄소 녹색성장을 제시하였고, 에너지, 환경관련 기술과 산업 등에서 미래 유망품목과 신기술을 개발하기 위해 총력을 기울이고 있다. 그러나 에너지 관련 부문에서는 현 전력시스템을 획기적으로 대체하여 본격적으로 상용화되기까지 많은 시간이 필요하기 때문에 당분간 국내 전력의 대부분은 화력발전과 원자력발전에 의존해야 하는 실정이다. 특히 국내 전력의 65%정도를 차지하고 있는 화력발전의 경우 발전소에서 부산되고 있는 석탄회는 약 600만톤이며, 2010년 석탄회 발생량은 약 736만톤으로 추후 석탄회 매립량은 증가될 것으로 전망된다. 그러나 우리나라 화력발전소 주변에는 이미 막대한 양의 석탄회가 폐기 매립되어 있고 일부 화력발전소에서는 석탄회 매립장 용량이 한계에 부딪혀 최악의 상황에 처해있다. 따라서 화력발전소에서 발생되는 석탄회를 효율적으로 재활용하여 처리할 수 있는 기술 개발이 필요하다. 이에 본 연구에서는 석탄회의 재할용 방안의 하나로서 화력발전소 석탄회 매립장에 매립되어 있는 석탄회를 이용하여 저강도 고유동화재(CLSM, Controlled Low Strength Material)의 재료를 개발하기 위해 인공신경망 학습을 통해 flow 및 일축압축강도를 실험을 통하지 않고도 CLSM의 Flow 및 일축압축강도를 예측하고자 한다.
    본 연구에서는 은닉층은 2, 3개, 모멘텀상수는 0.8, 0.9 목표시스템 오차값 0.01, 0.001 은닉층의 노드 수는 4, 6, 8와 학습율은 0.2, 0.3으로 변화시키면서 학습 횟수는 최대 100,000번을 학습하여 각각의 변화에 따른 인공신경망 모델의 학습효율 및 예측능력을 평가하고 이를 기준으로 CLSM의 Flow 및 압축강도 산정에 적합한 최적인공신경망 모델을 결정하였다.
    저강도 고유동화재에 대한 Flow 및 압축강도 시험결과를 바탕으로 인공신경망을 이용한 CLSM의 Flow 및 압축강도의 학습결과 결정계수(R2)값이 R2=0.89∼0.92, R2=0.93∼0.96 으로 높은 상관관계를 보였다. 또 한 인공신경망의 학습과정에서 전혀 접하지 않은 검증용 자료를 통한 CLSM의 Flow 및 압축강도의 예측결과 결정계수(R2)값이 각각 0.70, 0.76으로 Model 1의 구조가 가장 적합한 모델로 판단된다.

    영어초록

    Presently, the use recycling the Fly ash is limited to the cement raw material, ready-mixed concrete blending material, filling, cutting and etc. The fly ash is refined and recycled over 90% among the coal ash with many researches, however the bottom ash is unable to be mostly recycled and is reclaimed in the ash pond. In this research, a property of flow and the unconfined compressive strength for developing the material of the Controlled Low-Strength Material by using the coal ash reclaimed in ash pond of the thermoelectric power plant. A characteristic of flow and strength of CLSM depend on the combination ratio including the fly ash, bottom ash, cement, water quantity and etc. however, actually they are very difficult to draw the mechanism about the mixing ratio of each components and flow and strength. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. Thus, in this research, a flow and the unconfined compressive strength of CLSM will predict using the artificial neural network learning without an experiment. The unconfined compressive strength and flow were used age of 28days 45 among 60 obtained from the indoor test for the learning and others were used to verify for the constructed artificial neural network. In this research, node number of hidden layer 4, 6, 8, learning rate into 0.2, 0.3, the study frequency studied a maximum 100,000, momentum 0.8, 0.9 target system error 0.01, 0.001 and hidden layer 2, 3 evaluated the learning efficiency of the artificial neural network model according to each change and prediction ability. constant determined the optimum artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM, based on this. And the study result about six models in which the study result is excellent was used for the analysis.
    In the analyzed result learning, the coefficient of determination value(R2) of a flow and the compressive strength showed the correlation which is high in R2=0.89~0.92 and R2=0.93~0.96. And the coefficient of determination value(R2) of the flow of the foreseen outcome CLSM through verification data and the compressive strength of the structure of a model 1 is determined as 0.70, 0.76 as the most suitable model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“예술과 과학기술”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 13일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:04 오후