• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구 (Study on Dimension Reduction algorithm for unsupervised clustering of the DMR’s RF-fingerprinting features)

7 페이지
기타파일
최초등록일 2025.04.26 최종저작일 2023.06
7P 미리보기
무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷방송통신학회
    · 수록지 정보 : 한국인터넷방송통신학회 논문지 / 23권 / 3호 / 83 ~ 89페이지
    · 저자명 : 정영규, 신학철, 나선필

    초록

    RF-fingerprint를 이용한 클러스터링 기술은 전송 파형에 포함된 송수신기의 특성(signature)을 추출하고 이들에게 임의의 레이블을 자동으로 할당함으로써, 추후 지도 학습기반에 무선단말기 분류기의 개발을 용이하게 해준다. 동종 무선 단말기 분류를 위한 RF-fingerprint 특징 추출 알고리즘의 출력은 512개 또는 1024개 이상의 고차원 특징이다. 이러한 고차원의 특징을 분류기에는 효과적일 수 있으나 클러스터링 알고리즘의 입력으로는 부적절하다. 이에 본논문은 다차원의 RF-fingerprinting 특징을 무선단말기의 fingerprinting 특징을 유지하면서 차원을 효과적으로 줄일수 있는 차원 축소 알고리즘을 제안하고, 축소된 차원을 효과적으로 클러스터링할 수 있는 클러스터링 알고리즘을 제안한다. 제안된 RF-fingerprinting 클러스터링 알고리즘은 다차원 RF-fingerprinting 특징을 KL Divergence 기반에t-SNE를 이용하여 차원을 축소하고 DPC(Density Peaks Clustering)를 이용하여 클러스터링 수행한다. 무선단말기클러스터링 알고리즘의 성능 분석은 모토롤라XiR 10대와 윈어텍 N-Series 10대에서 수집한 3000개의 데이터셋을 이용한다. RF-fingerprintining기반 클러스터링 알고리즘의 성능 분석 결과 20개의 클러스터가 형성되었고, Homogeneity, Completeness, V-measure 모두 99.4%의 성능을 보였다.

    영어초록

    The clustering technique using RF fingerprint extracts the characteristic signature of the transmitters which are embedded in the transmission waveforms. The output of the RF-Fingerprint feature extraction algorithm for clustering identical DMR(Digital Mobile Radios) is a high-dimensional feature, typically consisting of 512 or more dimensions. While such high-dimensional features may be effective for the classifiers, they are not suitable to be used as inputs for the clustering algorithms.
    Therefore, this paper proposes a dimension reduction algorithm that effectively reduces the dimensionality of the multidimensional RF-Fingerprint features while maintaining the fingerprinting characteristics of the DMRs. Additionally, it proposes a clustering algorithm that can effectively cluster the reduced dimensions. The proposed clustering algorithm reduces the multi-dimensional RF-Fingerprint features using t-SNE, based on KL Divergence, and performs clustering using Density Peaks Clustering (DPC). The performance analysis of the DMR clustering algorithm uses a dataset of 3000 samples collected from 10 Motorola XiR and 10 Wintech N-Series DMRs. The results of the RF-Fingerprinting-based clustering algorithm showed the formation of 20 clusters, and all performance metrics including Homogeneity, Completeness, and V-measure, demonstrated a performance of 99.4%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국인터넷방송통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 18일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:27 오전