• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석 (Motor Imagery Brain Signal Analysis for EEG-based Mouse Control)

30 페이지
기타파일
최초등록일 2025.03.31 최종저작일 2010.06
30P 미리보기
뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국인지과학회
    · 수록지 정보 : 인지과학 / 21권 / 2호 / 309 ~ 338페이지
    · 저자명 : 이경연, 이상윤, 이태훈

    초록

    본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 β파(14-26 Hz)와 μ파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상·하·좌·우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.

    영어초록

    In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of β (14-26 Hz) and μ (8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인지과학”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 10일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:50 오후