• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

콜레스키 분해와 골롬-라이스 부호화를 이용한 무손실 오디오 부호화기 설계 (Design of a Lossless Audio Coding Using Cholesky Decomposition and Golomb-Rice Coding)

11 페이지
기타파일
최초등록일 2025.03.20 최종저작일 2008.11
11P 미리보기
콜레스키 분해와 골롬-라이스 부호화를 이용한 무손실 오디오 부호화기 설계
  • 미리보기

    서지정보

    · 발행기관 : 한국멀티미디어학회
    · 수록지 정보 : 멀티미디어학회논문지 / 11권 / 11호 / 1480 ~ 1490페이지
    · 저자명 : 정전대, 신재호

    초록

    무손실 오디오 부호화기에 있어서 선형예측기 및 이에 적합한 엔트로피 부호화기의 설계가 가장 중요한 부분이다. 본 논문에서는 공분산 방법에 콜레스키 분해를 이용하여 선형예측기의 계수를 계산하였고, 그 결과를 다항 예측기와 비교하여 예측 에러가 최소화되는 선형예측기를 선택하도록 하였다. 엔트로피 부호화기는 골롬-라이스 부호를 사용하였고, 골롬-라이스 부호화기의 매개변수를 계산하기 위해 블록기반 매개변수 예측 방법과 LOCO-I, RLGR의 순차 적응 방법을 적용하였다. 실험 결과 블록기반 매개변수 예측 방법과 제안 방식의 예측기를 이용하면 자기상관 방법과 레빈슨-더빈을 사용하는 FLAC 무손실 부호화기보다 2.2879%~0.3413% 압축률이 향상되는 결과를 나타내었고, 제안 방식의 예측기와 LOCO-I 순차 적응 방법을 이용한 경우는 2.2381%~0.0214% 압축률이 향상되는 결과를 나타내었다. 그러나 제안 방식의 예측기와 RLGR 순차 적응 방법을 이용한 경우는 특정 신호에서만 압축률이 향상되었다.

    영어초록

    Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-I and RLGR. The proposed predictor and the block-based parameter estimation have 2.2879%~0.3413% improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by 2.2879%~0.3413%. But the proposed predictor and the RLGR adaptation method got better results with specific signals.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“멀티미디어학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:14 오전