총 374개
-
축전기의 충-방전2025.01.221. 축전기의 충전 현상 실험 결과에 따르면 축전기의 충전 현상은 식 (2)의 지수함수형 변화를 잘 따르는 것으로 나타났습니다. 충전 시간과 시간상수의 비율이 증가함에 따라 전압이 지수함수적으로 증가하는 모습을 관찰할 수 있었습니다. 또한 반감기와 시간상수의 관계식 T= tau ln2가 성립하는 것으로 확인되었습니다. 2. 축전기의 방전 현상 방전 실험에서는 식 (3)의 지수함수형 변화가 전압이 급격히 낮아지는 구간에서는 잘 나타났지만, 전압 구간에서는 이론값과 약간의 오차가 발생하였습니다. 방전 시간이 시간상수의 9.352배일 때...2025.01.22
-
축전기의 충·방전 현상과 지수함수 변화2025.11.141. 축전기의 충·방전 현상 축전기의 충전과 방전 현상은 지수함수 형태로 진행된다. 충전 시 전압은 V(t) = V₀(1-e^(-t/τ)) 형태로 증가하고, 방전 시 V(t) = V₀e^(-t/τ) 형태로 감소한다. 실험에서 측정한 충전 데이터(2.51v, 3.418v, 3.755v)와 이론값의 오차율이 0.55%, 0.08%, 0.05%로 거의 일치하여 지수함수식이 성립함을 확인했다. 방전 현상도 유사하게 지수함수를 따르며, 12.82%의 오차율을 보였으나 여러 오차요인을 감안하면 성립한다. 2. 시간상수와 반감기의 관계 시간상수...2025.11.14
-
[중앙대학교 전기회로설계실습] A+ 예비보고서 7. RC회로의 시정수 측정회로 및 방법 설계2025.05.031. 오실로스코프 연결 Function generator, 저항, 커패시터를 순서대로 연결하고 저항의 양단에 오실로스코프의 단자를 연결하면, 전류가 CH1의 접지단자로 흘러들어가서 커패시터에는 전류가 흐르지 않게 됩니다. 따라서 저항의 파형은 Function generator와 동일하게 나오지만 커패시터의 파형은 나타나지 않을 것입니다. 1. 오실로스코프 연결 오실로스코프는 전자 회로 분석에 매우 중요한 도구입니다. 오실로스코프를 올바르게 연결하는 것은 회로의 동작을 정확하게 관찰하고 문제를 해결하는 데 필수적입니다. 오실로스코프 ...2025.05.03
-
수동소자의 고주파 특성 측정 방법2025.01.211. 저항, 커패시터, 인덕터의 고주파 특성 측정 이 실습에서는 저항, 커패시터, 인덕터의 고주파 특성을 측정하는 회로를 설계하고 실험을 통해 이들 소자의 등가회로와 넓은 주파수 영역에서의 동작을 이해하는 것이 목적입니다. 저항, 커패시터, 인덕터를 직렬로 연결한 회로에 주파수를 변화시키며 측정하여 공진 주파수와 인덕터의 영향이 나타나는 주파수 등을 확인합니다. 2. RC 직렬 회로의 주파수 응답 RC 직렬 회로에서 저항과 커패시터 사이의 연결 선에 인덕터 성분이 존재하게 되어, 주파수가 증가하면 값이 점점 작아지다가 어느 순간 증...2025.01.21
-
RL회로에서의 유도 법칙 적용2025.04.281. RL회로에서의 유도전류의 흐름 RL회로에서 기전력을 연결하면 축전기의 전하가 지수함수적으로 나타나며, 유도기 L이 있을 경우 전류가 서서히 증가하거나 감소한다. 유도기는 전류의 변화를 방해하다가 시간이 지나면 일반 도선처럼 작용한다. 2. RL회로에서의 고리 규칙 적용 RL회로에서 고리 규칙을 적용하면 -iR - L(di/dt) + xi = 0의 식을 도출할 수 있다. 이때 저항기를 통과할 때는 -iR의 퍼텐셜 변화가, 유도기를 지날 때는 자체 유도 기전력 xi_L이 생겨 전류의 흐름을 방해한다. 3. RC회로 내 이차 미분방...2025.04.28
-
RL회로 내 유도 법칙 적용2025.04.281. RL회로에서의 유도전류의 흐름 RL회로에서 기전력을 연결하면 축전기의 전하가 지수함수적 형태로 표현됩니다. 유도기(L)가 있을 경우 전류가 서서히 증가하거나 감소하며, 유도기의 존재로 인해 전류는 평형값인 xi/R보다 작습니다. 시간이 지남에 따라 회로에 흐르는 전류는 xi/R에 수렴합니다. 2. RL회로에서의 고리 규칙 적용 RL회로에서 스위치 S를 a에 연결하면 전류가 시계 방향으로 흐르게 됩니다. 전류가 저항기(R)를 통과할 때 -iR의 퍼텐셜 변화가 생기며, 유도기(L)를 지날 경우 자체 유도기전력(xi_L)이 생겨 전...2025.04.28
-
아날로그 및 디지털회로 설계 실습 실습4_신호발생기_예비보고서2025.01.211. Wien bridge RC 발진기 Wien bridge RC 발진기를 이용하여 신호 발생기를 설계, 제작, 측정하며 그 동작을 확인하는 것이 이 실습의 목적입니다. 설계 과정에서 Wien bridge 회로의 관계식을 이용하여 1.63 kHz에서 발진하는 회로를 설계하고, 증폭기 이득 AV를 구하는 과정이 포함됩니다. 또한 Wien bridge oscillator 회로를 설계하고 시뮬레이션을 통해 출력 파형과 발진 주파수를 확인합니다. 마지막으로 다이오드를 사용하여 Wien bridge oscillator를 안정화하는 회로를 설...2025.01.21
-
중앙대학교 3학년 1학기 전자회로설계실습 결과보고서6: Common Emitter Amplifier 설계2025.05.141. Common Emitter Amplifier 설계 Common Emitter Amplifier를 설계하였다. 직류 전압에서의 회로에서 Vb, Vc, Ve를 측정한 후 Ic, Ie, Av를 구한 후 simulation 값과 비교하였다. 최대 오차율은 2.27%로 성공적인 실험이었다. 100kHz, 20 mVpp의 주파수를 넣은 실험에서도 같은 과정을 반복하였다. 오차율은 최대 3.21%로 만족스런 실험이었다. 2. BJT 동작 원리 EBJ는 forward bias, CBJ는 reverse bias에 두어 BJT를 active m...2025.05.14
-
중앙대학교 아날로그 및 디지털 회로 설계 실습 예비 보고서2025.01.041. Wien bridge RC 발진기 Wien bridge RC 발진기는 아날로그 및 디지털 회로 설계에서 널리 사용되는 신호 발생기입니다. 이 실습에서는 Wien bridge RC 발진기를 설계하고 제작하여 동작을 확인하였습니다. 발진 주파수 1.63 kHz에서 발진하도록 회로를 설계하였고, 시뮬레이션을 통해 출력 파형과 FFT 분석을 수행하였습니다. 또한 다이오드를 이용하여 출력 신호를 안정화하는 방법을 제시하였습니다. 1. Wien bridge RC 발진기 Wien bridge RC 발진기는 안정적이고 신뢰성 있는 발진기로,...2025.01.04
-
[예비보고서]중앙대학교 아날로그및디지털회로설계실습 신호발생기2025.05.101. Wien bridge RC 발진기 Wien bridge RC 발진기를 이용하여 신호 발생기를 설계, 제작, 측정하고 그 동작을 확인하는 실습을 수행했습니다. 실습에서는 Wien bridge 회로의 관계식을 도출하고, 1.63 kHz에서 발진하는 회로를 설계했습니다. 또한 발진 조건을 만족하는 저항값을 찾고, 시뮬레이션을 통해 출력 파형과 FFT 분석을 수행했습니다. 마지막으로 다이오드를 사용하여 Wien bridge 발진기를 안정화하는 회로를 설계하고, 다이오드의 역할에 대해 설명했습니다. 1. Wien bridge RC 발진...2025.05.10
