총 45개
-
실험 25. CE 증폭기와 주파수 응답 예비결과보고서2025.01.021. 보데 선도(Bode plot) 보데 선도는 가로축에 각주파수의 대수 log10를 취하고, 세로축에 이득와 위상차를 취하여 전압이득과 주파수의 관계를 그린 것입니다. 이를 통해 전압 증폭기의 주파수 응답 특성을 확인할 수 있습니다. 2. 저주파 증폭기 응답 저주파 영역에서는 DC 차단(AC 결합)과 바이패스 동작을 위해서 커패시터가 하위 차단(하위 3dB) 주파수에 영향을 미칩니다. 공통 이미터 증폭기 회로의 AC 등가회로를 통해 입력 커패시터, 바이패스 커패시터, 부하 커패시터 부분의 주파수 응답을 계산할 수 있습니다. 1. ...2025.01.02
-
공통 이미터 증폭기 설계 및 시뮬레이션2025.11.141. 공통 이미터 증폭기 (Common Emitter Amplifier) BJT는 베이스, 컬렉터, 에미터 3개 단자를 가지며, 4단자망 증폭기로 사용하기 위해 한 단자를 공통으로 사용한다. 공통 이미터 구성에서는 입력이 베이스로, 출력이 컬렉터로 나온다. 이 구조는 중간 정도의 입력저항, 큰 전압이득, 큰 전류이득을 가지며 주로 중간 증폭 단으로 사용된다. Small signal model로 표현 가능하며, 전압이득은 Rc 값에 따라 변한다. 2. 전압이득 및 임피던스 특성 공통 이미터 증폭기의 전압이득은 Rc와 RL 값에 따라 ...2025.11.14
-
컴퓨터구조 출석수업 만점2025.01.251. 직접주소 직접주소는 명령어의 주소필드에 직접 오퍼랜드의 주소를 저장시키는 방식이다. LDA ADRS ; AC←M[ADRS] 즉 ADRS=700이고M[700]=900이므로 유효주소는 700, AC에 적재되는 값은 900이다. 2. 간접주소 간접주소는 명령어의 주소필드에 유효주소가 저장 되어있는 기억장치 주소를 기억시키는 방식이다. LDA[ADRS] ; AC←M[M[ADRS]] 즉 M[700]=900으로 M[900]이 되고 M[900]=950 이므로 유효주소는 900, AC에 적재되는 값은 950이다. 3. 인덱스주소 인덱스주소는...2025.01.25
-
부울대수의 규칙(교환법칙, 결합법칙, 분배법칙, 드모르강의 정리) 증명2025.01.181. 교환법칙 부울 변수 A와 B에 대해 A+B=B+A, A·B=B·A, A+A=A 등의 교환법칙이 성립함을 OR 연산자의 정의를 사용하여 증명하였다. 또한 A+A'=1의 관계도 설명하였다. 2. 결합법칙 부울 대수의 결합법칙은 덧셈과 곱셈 모두에 적용되며, (A+B)+C = A+(B+C) = A+B+C, (A·B)·C = A·(B·C) = A·B·C와 같이 연산 순서를 변경해도 결과가 동일함을 보였다. 3. 분배법칙 분배법칙은 곱셈과 덧셈 간의 관계를 정의하며, A(B+C) = AB+AC가 성립함을 설명하였다. 이를 통해 부울 함...2025.01.18
-
전자회로실험 과탑 A+ 결과 보고서 (실험 11 공통 소오스 증폭기)2025.01.291. 공통 소오스 증폭기 회로 공통 소오스 증폭기 회로에서 입력(v_t)은 게이트-소오스 전압(V_GS)이고, 출력(v_o)은 드레인-소오스 전압(V_DS)이다. 게이트-소오스 사이의 소신호 입력 전압에 비례하는 전류가 드레인에 흐르고, 이 전류가 출력 쪽의 저항 R_D에 의해 전압으로 변환되면서 전압을 증폭시킨다. 바이어스 회로를 포함한 공통 소오스 증폭기 회로에서 R_1, R_2, R_S는 게이트에 적절한 바이어스 전압을 제공해 MOSFET이 활성 영역(포화 영역)에서 동작하도록 한다. 2. 공통 소오스 증폭기의 입력-출력 특성...2025.01.29
-
차동 증폭기 회로 실험2025.11.171. BJT 차동 증폭기 BJT 차동 증폭기는 플러스와 마이너스 입력단자를 가진 회로로, 두 입력에 인가된 신호에서 위상이 반대인 신호성분은 크게 증폭되지만 동상인 신호성분은 출력에서 상쇄된다. DC 결합으로 연결되며 양의 전원 VCC와 음의 전원 VEE가 DC 바이어스를 제공한다. 차동 전압이득과 공통모드 이득을 계산할 수 있으며, 실험에서 두 트랜지스터의 re값이 같다고 가정한다. 2. FET 차동 증폭기 FET 차동 증폭기는 JFET를 사용하는 차동 증폭기로, 차동 전압이득을 계산할 수 있다. IDSS와 VP(핀치 오프 전압)...2025.11.17
-
반파 및 전파 정류회로 실험 결과 분석2025.11.161. 반파 정류회로 반파 정류회로는 교류 신호의 한 방향(양 또는 음)만을 통과시켜 직류로 변환하는 회로입니다. 실험에서 AC결합과 DC결합의 출력파형이 측정되었으며, 다이오드의 방향에 따라 양파형 또는 음파형만 얻어집니다. 다이오드의 문턱전압(약 0.59V)으로 인한 전압강하가 발생하며, 주파수 변화에 따라 출력 특성이 달라집니다. 커패시터 용량 변경(1uF에서 100uF)에 따라 출력 전압이 변화하는 특성을 확인할 수 있습니다. 2. 전파 정류회로 전파 정류회로는 교류 신호의 양쪽 방향을 모두 직류로 변환하는 회로입니다. 브리지...2025.11.16
-
[A+레포트] 부울대수의 규칙(교환법칙, 결합법칙, 분배법칙, 드모르강의 정리)들을 각각 증명해보자.(단, 부울대수식은 변수 3개(A,B,C)를 모두 사용한다.)2025.01.121. 부울대수의 기본 법칙: 교환법칙과 결합법칙 부울대수는 디지털 논리 설계와 컴퓨터 공학의 기초가 되는 수학적 체계로, 논리 연산의 규칙과 속성을 정의한다. 교환법칙은 두 변수의 논리곱(AND)과 논리합(OR) 연산의 결과가 그 변수들의 순서에 관계없이 동일하다는 것을 의미한다. 결합법칙은 세 변수의 논리 연산에서, 연산의 순서가 결과에 영향을 주지 않는다는 것을 의미한다. 이러한 기본 법칙들을 변수 A, B, C를 사용하여 증명하였다. 2. 부울대수의 고급 법칙: 분배법칙과 드모르강의 정리 부울대수의 분배법칙은 A(B+C) = ...2025.01.12
-
R, L, C 단독회로의 각각에 대한 전류와 전압의 위상차2025.01.041. R 단독회로 R 단독회로에서는 전압과 전류의 위상차가 발생하지 않습니다. DC 회로와 AC 회로 모두에서 저항만 있다면 전력 손실은 유효 전력만 발생하고 무효 전력은 없습니다. 또한 옴의 법칙에 따라 전류가 저항에 반비례하며, 직렬 연결된 저항들의 전압이 분배됩니다. 2. L 단독회로 L 단독회로에서는 전류가 전압보다 90도 늦게 흐릅니다. 이는 인덕터가 전압이 인가되면 전류의 변화를 방해하는 특성 때문입니다. 이로 인해 무효 전력이 발생하며, 전류가 갑자기 차단되면 큰 전압이 유기됩니다. 3. C 단독회로 C 단독회로에서는 ...2025.01.04
-
다이오드의 특성 및 정류회로2025.05.161. 다이오드 다이오드는 반도체 소자의 일종으로, 전류를 한 방향으로만 흐르게 하는 특성을 가지고 있습니다. 다이오드에는 게르마늄 다이오드와 실리콘 다이오드가 있으며, 이들은 P-N 접합 구조로 이루어져 있습니다. 다이오드의 양극(양극성)과 음극(음극성)은 각각 P 영역과 N 영역으로 구분됩니다. 다이오드가 순방향 바이어스 상태일 때 전류가 흐르며, 역방향 바이어스 상태일 때는 전류가 흐르지 않습니다. 2. LED LED(Light Emitting Diode)는 다이오드의 일종으로, P-N 접합 구조를 가지고 있습니다. 전류가 흐르...2025.05.16
