총 101개
-
기체상수 결정 실험 예비 레포트2025.11.181. 이상기체 상태 방정식 이상기체는 무질서하게 운동하는 원자 또는 분자로 이루어진 가상의 기체로, 구성 입자의 크기가 무시할 정도로 작고 입자 간 상호작용이 없다고 가정합니다. 이상기체 방정식은 PV=nRT로 표현되며, 여기서 P는 압력, V는 부피, n은 몰수, T는 절대온도, R은 기체상수(0.082atm·L/mol·K)입니다. 보일 법칙, 샤를 법칙, 아보가드로 법칙을 통합하여 유도되며, 실제기체는 온도가 높고 압력이 낮을수록 이상기체의 특성을 보입니다. 2. 기체상수 결정 방법 기체상수는 수상치환 방법을 이용하여 결정합니다...2025.11.18
-
이성분 용액의 온도-조성 상도표 예비2025.05.091. 몰분율 혼합물에서 특정 성분의 양을 나타내기 위하여 몰분율을 사용한다. 특정 성분의 mol수를 전체 혼합물의 mol수로 나눈 값을 몰분율이라고 한다. 각 성분의 몰분율은 항상 1보다 작으며, 모든 성분의 몰분율 합은 1이 되어야 한다. 이번 실험에서는 methanol과 cyclohexane의 이성분 액체 혼합물을 사용할 것이며, cyclohexane의 비율을 몰분율 0.30(30%)에서 0.95(95%)로 증가시키며 transition temperature(demixing temperature)를 측정하도록 한다. 2. 상(p...2025.05.09
-
충전층 흐름의 압력 강하 실험 분석2025.11.151. 충전층과 압력 강하 충전층은 화학공정에서 기체흡수탑, 증류, 반응기, 여과기 등에 사용된다. 충전층 내에서 유체가 공극으로 흐르며, 이를 모세관 모델로 해석한다. 압력 강하는 Kozeny-Carman 식으로 표현되며, Re가 1000 이상일 때는 모든 영역에서 사용 가능한 Ergun 식을 적용한다. 실험에서 평균유속이 증가할수록 압력차가 커지는 것을 확인했으며, 유속 10.28~19.77cm/s 범위에서 압력차 3~10mmHg가 측정되었다. 2. 초기 유동화 속도 초기 유동화 속도는 고정된 충전 입자가 유동하기 시작하는 속도이...2025.11.15
-
무기화학실험 A High-Temperature Superconductor 결과보고서2025.01.181. 초전도체 초전도체는 임계 온도(Tc) 이하로 냉각되었을 때 전기저항이 완전히 사라지는 물질을 말한다. BCS 이론에 따르면 cooper pair가 특정 속도로 나아가고 있을 때 둘 중 한 개의 전자가 저항을 받아도 전자쌍으로서는 전기저항을 받지 않아 속도가 떨어지지 않는다. 초전도체는 제1형과 제2형으로 구분되며, 제2형 초전도체에서는 자기부상 현상이 나타난다. 2. 고온 구리 산화물 초전도체 고온 구리 산화물 초전도체는 뒤틀려 있거나 산소가 결핍된 여러 층의 페로브스카이트(perovskite) 구조로 설명할 수 있다. BCS...2025.01.18
-
화공생명공학실험 (화공실) 열역학 상태방정식( EoS, Equation of State) 레포트2025.05.011. 상태방정식 열역학에서 온도, 압력, 내부에너지, 부피 등의 상태변수들 사이의 관계를 기술하는 데 사용되는 방정식. 유체와 기체의 성질을 기술하는 데 유용하며, 이상기체방정식, 반데르발스 상태방정식, 3차 상태방정식 등이 있다. 2. 이상기체방정식 기체 분자들의 속력 분포가 다양하고 불규칙적인 운동, 분자 간 인력/반발력 무시, 분자가 완전 탄성체, 분자 크기 무시, 평균 운동 에너지가 온도에 비례한다는 가정을 바탕으로 한 상태방정식. 3. 비리얼 상태방정식 압축 인자 Z를 압력이나 부피의 역수에 대해 멱급수 형태로 나타낸 상태...2025.05.01
-
[단위조작실험]Hagen-poiseuille식의 응용(A+)2025.05.021. Hagen-Poiseuille 식의 응용 Hagen-Poiseuille 식은 긴 원통형 파이프를 통해 흐르는 층류에서 비압축성 및 뉴턴 유체의 압력 강하를 제공하는 물리 법칙입니다. 이 식은 유체의 점도로 인한 압력 강하를 나타내며, 유체가 비압축성이고 뉴턴 유체라는 기본적인 가정을 가지고 있습니다. 그러나 실제 흐름은 직경보다 긴 일정한 원형 단면의 파이프를 통해 흐르는 층류이며, 임계 값을 초과하는 속도 및 파이프 직경을 사용할 경우 실제 유체 흐름은 난류가 되어 Hagen-Poiseuille 식으로 계산한 것보다 더 큰 ...2025.05.02
-
이산화탄소의 분자량 측정 및 액체 이산화탄소 관찰2025.01.021. 이산화탄소의 분자량 측정 이산화탄소의 분자량을 두 가지 방법으로 측정했다. 첫째, 공기의 밀도를 이용해 이산화탄소의 밀도를 계산하고 이를 통해 분자량을 도출했다. 둘째, 이상기체 상태방정식을 이용해 분자량을 계산했다. 두 방법 모두 유사한 결과를 보였다. 실험 과정에서 이산화탄소가 점차 확산되어 공기의 분자량에 수렴하는 경향을 관찰했다. 오차 요인으로는 이상기체 가정의 한계, 수증기 응결, 공기 중 이산화탄소 및 수증기 존재 등이 있다. 2. 액체 이산화탄소 관찰 타이곤 튜브 내부에서 드라이아이스가 승화하며 압력이 높아짐에 따...2025.01.02
-
화공열역학실험 A+ 삼성분계 상태도 결과레포트2025.01.231. 화공열역학실험 이 실험의 목적은 3성분계의 상호용해도(mutual solubility)와 맺은선(tieline)을 삼각 그래프에 도시하는 것입니다. Gibbs의 상규칙에 따르면 온도, 압력, 농도만이 평형에 영향을 미치므로, 이 실험은 정온 정압 조건에서 진행되었습니다. 실험은 2주차에 걸쳐 진행되었으며, 1주차에는 20g 기준 10wt%, 25wt%, 40wt%, 60wt% 수용액을 제조하여 적정을 수행하였고, 2주차에는 40g 기준 10wt%, 25wt%, 40wt%, 60wt% CH3COOH-H2O-CHCl3 용액을 제조...2025.01.23
-
기체 상수의 결정 예비레포트2025.11.171. 이상기체 상태 방정식 이상기체는 탄성충돌 이외에는 상호작용이 일어나지 않고 무질서하게 운동하는 점입자로 구성된 가상의 기체 모형입니다. 이상기체 상태 방정식 PV=nRT는 보일의 법칙, 샤를의 법칙, 아보가드로 법칙을 종합하여 유도되며, 기체의 압력, 부피, 몰수 및 온도 사이의 관계를 설명합니다. 여기서 R은 기체상수로 0.08206 atm·L/mol·K 또는 8.314 J/mol·K의 값을 가집니다. 2. 반데르발스 방정식 실제 기체의 거동을 설명하는 방정식으로, 이상기체 상태 방정식에 압력과 부피 보정요소를 추가합니다. ...2025.11.17
-
삼성분계2025.01.161. 삼성분계(상평형) 삼성분계(상평형)에서 자유도의 수는 F=C-P+2 공식에 따라 F=3-1+2=4이다. 세기변수는 온도, 압력, 두 성분의 농도이며, 세 개 성분의 농도가 모두 필요하지 않은 이유는 총 농도에서 두 농도의 합을 뺀 것이 나머지 성분의 농도가 되기 때문이다. 2. 삼성분계 용해도 곡선 벤젠-초산-물 3성분계의 용해도 곡선을 예로 들면, 벤젠-초산, 초산-물은 전 농도 구간에서 서로 혼합되나 벤젠-물은 서로 혼합되지 않는다. 초산을 첨가하면 두 층 사이에 분배되고, 소량의 물이 벤젠층에, 소량의 벤젠이 물층에 용해...2025.01.16
