총 34개
-
MCMC 모델링2025.05.091. MCMC (Markov Chain Monte Carlo) MCMC는 확률적인 모델링과 추론을 위해 사용되는 강력한 도구입니다. MCMC는 샘플링 알고리즘 중 하나로, 타겟 분포로부터 샘플을 추출하는 기법입니다. 이를 통해 우리는 원하는 분포로부터 난수를 생성하거나, 분포의 특성을 파악하는데 도움을 얻을 수 있습니다. 2. 정규분포 샘플링 이 예제에서는 MCMC를 사용하여 정규분포로부터 샘플을 추출하는 방법을 살펴봅니다. 정규분포는 많은 자연 현상을 모델링할 때 사용되는 중요한 분포 중 하나이므로, MCMC를 통해 정규분포로부터...2025.05.09
-
모수적 추정을 통한 데이터 기반 분포 모형화 2 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 주어진 수학적 모델의 파라미터를 데이터를 이용하여 추정하는 방법으로, 데이터의 불확실성을 모델링하고 신뢰성 있는 결론을 도출하는데 유용합니다. 모수적 추정의 기본 개념과 원리를 설명하고, 이를 활용하여 실제 데이터를 분석하여 모델의 파라미터를 추정하는 예시를 제시할 것입니다. 2. 모수적 방법과 비모수적 방법 모수적 방법과 비모수적 방법은 데이터를 모델링하는 데 사용되는 접근 방식에 차이가 있습니다. 두 방법은 데이터에 대한 가정과 모델의 유연성 측면에서 서로 다릅니다. 블로그에서는 두 방법을 비교하...2025.05.13
-
머신러닝 개요 및 Google Colab, Jupyter Notebook 기초 실습2025.12.111. 머신러닝의 개념 및 분류 머신러닝은 컴퓨터가 데이터로부터 스스로 학습하여 패턴을 발견하고 예측하는 인공지능의 한 분야입니다. 인공지능의 하위 집합이며, 딥러닝은 머신러닝의 한 방법론입니다. 머신러닝은 지도학습(정답 데이터 제공), 비지도학습(패턴 발견), 강화학습(보상 최대화)으로 나뉩니다. 지도학습은 분류와 회귀 문제에 사용되며, 비지도학습은 군집화와 차원 축소에 사용됩니다. 2. 지도학습(Supervised Learning) 지도학습은 입력 데이터와 정답 데이터(레이블)가 주어진 상태에서 모델을 훈련시키는 방법입니다. 분류...2025.12.11
-
Python 초간단 챗봇 만들어보기 (chatbot)2025.05.081. 챗봇 기초 챗봇은 최근 많은 관심을 받고 있는 프로그램입니다. 이 문서에서는 파이썬을 이용해 간단한 챗봇을 구현하는 방법을 소개합니다. 기본적인 if문을 사용하여 사용자의 입력에 따라 미리 정의된 답변을 반환하는 방식으로 챗봇을 만들 수 있습니다. 이후 정규 표현식을 활용하여 유사한 질문에도 대응할 수 있도록 하고, JSON 파일을 이용해 질문과 답변을 외부에서 관리할 수 있는 방법을 설명합니다. 이를 통해 챗봇의 대화 능력을 향상시킬 수 있습니다. 2. if문을 이용한 챗봇 구현 가장 기본적인 챗봇 구현 방법은 if문을 사용...2025.05.08
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09
-
세종대학교 소프트웨어 특강 과제12025.05.101. Linear Regression 주어진 데이터에 대해 가장 잘 맞는 선형 회귀 모델을 찾았습니다. Gradient Descent 알고리즘을 사용하여 모델의 최적 매개변수를 구했으며, 이를 통해 입력 x=15에 대한 y 값을 예측할 수 있었습니다. 또한 회귀선을 데이터 포인트와 함께 시각화하였습니다. 2. Logistic Regression 두 개의 입력 변수(Petal_Length, Petal_Width)를 사용하여 Iris versicolor와 Iris virginica 두 클래스를 구분하는 로지스틱 회귀 모델을 구현하였습니...2025.05.10
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
방송통신대학교 통계데이터학과) 파이썬과 R 출석수업과제물 (30점 만점 A+)2025.01.261. R 데이터프레임 생성 R을 사용하여 name, height, weight 3개의 열을 갖는 데이터프레임을 생성하고, 첫 번째 사람 kim의 키와 몸무게 두 값(이름 제외)을 배열로 추출하였습니다. 2. 파이썬 딕셔너리 생성 x1, x2, x3 리스트를 사용하여 name, height, weight 키를 가진 파이썬 딕셔너리를 생성하였습니다. 3. 파이썬 데이터프레임 생성 파이썬에서 생성한 딕셔너리를 사용하여 데이터프레임을 만들고, 첫 번째 사람 kim의 키와 몸무게 두 값(이름 제외)을 배열로 추출하였습니다. 4. 파이썬 함수...2025.01.26
-
OpenCV python으로 여러가지 필터 적용하여 영상 선명하게 만들기2025.05.061. 필터 적용을 통한 영상 선명화 이 프로젝트에서는 OpenCV와 Python을 사용하여 다양한 필터를 적용하여 흉부 X선 영상을 선명하게 만드는 방법을 다룹니다. 사용된 필터에는 GaussianBlur, Averaging, Laplacian, Sobel, Gamma Correction, Equalization 등이 있으며, 각 필터의 특성과 적용 방법, 그리고 최종 결과물을 보여줍니다. 코드 구현 과정과 실행 결과를 자세히 설명하고 있습니다. 1. 필터 적용을 통한 영상 선명화 영상 선명화를 위한 필터 적용은 다양한 방법으로 이...2025.05.06
-
Stress Strength Analysis에서 겹친 부분에 대한 이해 (응력 강도의 신뢰성 분석) - 파이썬 소스 코드 포함2025.05.111. Stress Strength Analysis 구조물이나 소재의 안전성을 평가할 때, stress와 strength 사이의 상호작용은 중요한 요소입니다. Stress는 구조물이나 소재에 가해지는 응력을 의미하며, strength는 해당 구조물이나 소재가 견딜 수 있는 강도를 나타냅니다. 가장 기본적인 해석은 Stress값이 Strength를 넘어서면 파괴가 발생한다는 것입니다. 그러나 파괴 이벤트는 단순히 두 값의 비교로 이루어지는 것만이 아닙니다. 실제로는 Stress와 Strength가 확률분포로써 결정되기 때문에, 파괴 이...2025.05.11
