총 528개
-
<현역의대생> 카타스트로피 이론_탐구보고서_수학(세특)2025.01.111. 카타스트로피의 개념 카타스트로피는 그리스어 어원으로 '아래 혹은 하락'의 의미를 지니는 'Kata'와 '전환 혹은 변화'를 뜻하는 'strophe'가 결합된 용어로, 어떤 상태가 본래의 연속성에서 벗어나 급격한 변화를 보이는 것을 의미한다. 카타스트로피 이론은 독립 변수의 작은 변화가 종속 변수(설명하고자 하는 현상)의 변동을 야기함을 수학적으로 설명한 것이다. 2. 카타스트로피 이론의 등장 뉴턴이 미적분학을 발견한 후 연속적인 운동에서 변화율을 분석할 수 있게 되었지만, 대부분의 사회 현상, 인간의 행동, 생태계 형상들은 연...2025.01.11
-
약의 혈중 농도(이차함수와 약물의 혈중 농도 간의 관계)2025.01.161. 약물의 혈중 농도 약물의 혈중 농도는 약물의 작용 시기와 지속 시간을 결정하는 중요한 요소이다. 혈중 농도는 환자의 체내에서 약물이 어떻게 분배되고 대사되며 배출되는지의 패턴을 반영하기 때문에, 이를 정확하게 이해하는 것은 약물 치료의 효과와 안전성을 최대화하는 데 큰 의미가 있다. 2. 이차함수와 약물의 혈중 농도 관계 본 연구는 약물의 혈중 농도와 이차함수 간의 관계를 중심으로 이루어졌다. 이차함수는 그 특성상 약물의 농도 변화를 포착하기에 적합한 수학적 도구로 생각되며, 이를 통해 약물의 혈중 농도 변화를 수학적으로 예측...2025.01.16
-
교육현장에서 일상생활을 통한 수학교육의 중요성과 하루일과에서 지도할 수 있는 수학교육의 실제2025.05.131. 일상생활을 통한 수학교육의 중요성 일상생활을 통한 수학교육은 학생들에게 추상적이고 이론적인 개념을 실제 상황과 연결하여 이해하도록 돕는 효과적인 방법입니다. 이를 통해 수학을 재미있고 유용한 도구로 인식하게 하며, 학생들의 학습 동기를 높일 수 있습니다. 실생활 응용 능력 강화, 동기 부여, 문제 해결 능력 향상 등의 중요성이 있습니다. 2. 일상생활을 활용한 수학교육의 실제 지도 방법 상황 모델링, 실제 데이터 활용, 문제 해결 프로젝트, 게임과 즐거운 활동, 실제 문제 연구 등의 방법을 통해 일상생활을 활용한 수학교육을 실...2025.05.13
-
라플라스 변환의 원리와 미분방정식 해법2025.11.161. 라플라스 변환의 정의 및 원리 라플라스 변환은 미분방정식을 대수방정식으로 변환시켜 손쉽게 풀 수 있는 변환법입니다. 미분과 적분, 초월함수의 개념이 포함된 복잡한 미분방정식을 인수분해와 근의 공식 등으로 간단히 해결할 수 있습니다. 라플라스 변환은 선형성을 띠며, 변환된 식을 역변환하여 원래 미분방정식의 해를 얻습니다. 복잡한 역변환 과정은 변환 표를 참고하여 직관적으로 수행합니다. 2. 미분방정식의 실생활 응용 미분방정식은 물리학의 운동 방정식, 열 방정식, 슈뢰딩거 방정식 등에 사용됩니다. 공학에서는 회로 이론, 제어 시스...2025.11.16
-
수학 모델링(미분방정식을 이용)을 통한 생체시계의 원리 분석2025.01.131. 생체시계 우리 몸에는 시계가 있다는 것을 알게 되었습니다. 뇌하수체에 있는 인체시계는 period라는 유전자(물질)가 증가/감소를 24시간마다 반복하면서 돌아갑니다. 이러한 생화학적 현상을 미분방정식으로 나타낼 수 있습니다. 핵 안에서 피리어드(M)물질의 시간당 변화량(dM/dt)은 α1의 속도로 일어나는 화학반응(P,A,Kd의 함수)의 결과물의 양에서 세포안에서 자체적으로 β1의 속도로 사라지는 M의 양을 뺀 값입니다. 핵 밖에서의 Pc의 시간당 변화량(dPc/dt)은 α2의 속도로 핵밖으로 나가는 M의 양에서 자체적으로 β...2025.01.13
-
공업수학의 차원(dimension) 도구 중 극좌표의 효과적 활용2025.01.201. 극좌표 개념과 응용 극좌표는 좌표 평면에서 한 점의 위치를 나타내기 위해 각도와 반지름을 사용하는 좌표계입니다. 이는 일반적인 직교 좌표계와 달리, 중심점(원점)에서 특정 각도와 거리로 한 점을 표현합니다. 극좌표계는 특히 원형 또는 방사형 대칭을 가지는 문제에서 유용하게 적용되며, 물리학, 기계공학, 전기공학 등 다양한 공학 분야에서 활용됩니다. 2. 극좌표의 장점 분석 극좌표는 방사형 대칭성을 가진 문제에 대한 접근성을 높여주며, 특정 물리적 현상을 모델링하는 부분에 있어 직교 좌표계보다 효율적입니다. 또한 극좌표는 다양한...2025.01.20
-
선형계획법과 최적화 문제 해결2025.11.141. 선형계획법(Linear Programming) 선형계획법은 목적함수와 제약조건이 결정변수들의 1차 함수로 표현되는 최적화 모형입니다. 비례성, 가합성, 분할성의 특징을 가지며, 그래프 해법과 심플렉스 해법을 통해 최적해를 구합니다. 심플렉스 해법은 현재 꼭짓점에서 이웃한 꼭짓점으로 이동하며 목적함수 값을 개선시켜 최적해에 도달합니다. 2. 최적생산량 결정 문제 제한된 자원 하에서 제품의 생산량을 결정하여 이익을 최대화하는 문제입니다. 결정변수는 각 제품의 생산량, 목적함수는 판매이익의 최대화, 제약조건은 원료의 가용량입니다. ...2025.11.14
-
벡터와 행렬의 효과적 활용법 및 장점2025.11.151. 행렬을 이용한 선형 방정식 해결 행렬은 여러 개의 선형 방정식을 한 번에 표현할 수 있어 선형 방정식의 해를 구하는 데 유용하다. 행렬의 곱셈을 이용하면 여러 개의 선형 변환을 한 번에 적용할 수 있어 시간과 노력을 절약할 수 있다. 이러한 특성으로 인해 복잡한 계산을 간단하게 처리할 수 있으며, 수학적 문제 해결에 큰 도움이 된다. 2. 데이터 분석에서의 벡터와 행렬 활용 벡터를 사용한 차원 축소 기법은 데이터를 더욱 효과적으로 분석할 수 있도록 해준다. 공분산 행렬은 데이터 간의 상관 관계를 분석하는 데 사용되며, 행렬은 ...2025.11.15
-
IB Math SL IA Modeling Change in Carbon dioxide Level Using Different Mathematical Functions2025.05.061. Carbon dioxide level in the atmosphere 이 연구에서는 산업혁명 전후 다양한 시기의 대기 중 이산화탄소 농도 변화를 수학적 함수를 사용하여 모델링하였습니다. 코사인 함수, 지수 함수, 선형 함수 등을 이용하여 이산화탄소 농도 변화 추세를 분석하고, 이를 바탕으로 이산화탄소 농도 한계치(550ppm)에 도달하는 시점을 예측하였습니다. 연구 결과, 산업혁명 이전에는 이산화탄소 농도가 178-260ppm 범위에서 주기적으로 변동했지만, 산업혁명 이후에는 지수적으로 증가하여 약 ) 년 후에 한계치에 도달할...2025.05.06
-
미분방정식을 이용해 생체시계의 비밀 해결2025.05.041. 생체시계 일반적으로 온도가 오르게 되면 다른 생체반응은 빨라지는데, 이와는 대조적으로 생체시계의 반응은 환경이나 온도와는 상관없이 일정한 리듬을 갖고 있다. 생체시계로 인한 신체 리듬이 어떻게 모든 사람에게 공통적으로 나타나는지를 규명하기 위해 전 세계의 과학자들은 생체시계 원리를 밝히려 노력했다. KAIST 수리과학과의 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 불구하고 생체시계의 속도를 유지하는 원리를 발견했다. 2. 피리어드2 단백질 KAIST 연구진은 이 같은 이유를 피리어드2라는 핵심 단백질...2025.05.04
