총 25개
-
이산확률분포의 개념과 종류 요약2025.11.161. 이산확률분포의 정의 이산확률분포는 이산확률변수의 확률분포를 나타내는 개념으로, 확률변수가 가질 수 있는 값의 개수를 셀 수 있는 경우를 의미한다. 예를 들어 주사위를 던져 나오는 눈의 개수(1~6)처럼 확률변수가 가질 수 있는 값이 유한하고 셀 수 있을 때 이를 이산확률변수라 하며, 그 확률분포를 이산확률분포라고 부른다. 확률분포는 확률변수가 특정 값을 가질 확률을 나타내는 함수로서 어떤 사건의 결과에 대한 확률을 수학적으로 표현하는 도구이다. 2. 이항분포와 베르누이 분포 이항분포는 연속된 n번의 독립시행에서 각 시행이 확률...2025.11.16
-
이항분포와 푸아송 분포의 개념, 특징, 차이점2025.11.161. 베르누이 시행과 이항분포 이항분포는 베르누이 시행을 반복할 때 성공과 실패 중 하나의 결과가 나오는 실험에서 성공의 횟수를 측정하는 확률분포입니다. 각 시행이 서로 독립적이고 성공 확률이 고정되어 있을 때 적용되며, 동전 던지기에서 앞면이 나올 확률이 0.5일 때 10번 던졌을 때의 앞면 횟수 측정 등의 예시가 있습니다. 이항분포는 통계학, 경제학, 생명과학 등 다양한 분야에서 활용됩니다. 2. 푸아송 분포 푸아송 분포는 일정 시간 또는 공간에서 발생하는 사건의 수를 나타내는 분포로, 이항분포의 한계로 볼 수 있습니다. 사건이...2025.11.16
-
경영통계학: 이항분포와 확률질량함수2025.11.171. 이산확률분포 이산확률변수는 확률변수 X가 취할 수 있는 값이 연속적이지 않은 경우를 말합니다. 예를 들어 주사위를 던져서 나오는 눈은 1, 2, ..., 6으로 1과 2 사이의 어떤 값도 취하지 않습니다. 이산확률분포는 이산확률변수가 취할 수 있는 모든 결과와 그 결과의 발생확률을 대응시킨 표 또는 함수입니다. 대표적인 이산확률분포에는 이항분포와 포아송분포가 있습니다. 2. 이항분포의 정의 이항분포(Binomial distribution)는 가장 잘 알려진 이산형 확률분포 중 하나입니다. 베르누이 시행을 여러 번 반복할 때 각...2025.11.17
-
연속확률분포의 이론과 응용2025.11.171. 확률밀도함수(PDF) 확률밀도함수는 연속확률분포의 기본 원칙을 제공하며, 두 가지 중요한 조건을 만족해야 한다. 첫째, 부정적이지 않음으로 모든 값에 대해 음수가 아니어야 하며, 둘째, 단위 면적으로 전체 범위에서 PDF 곡선 아래의 영역이 1과 같아야 한다. 이 정규화 조건은 할당된 확률이 총 확률 1을 보장하며, 다양한 연속확률분포를 구성하고 해석하기 위한 기초를 형성한다. 2. 정규분포와 중앙한계정리 정규분포는 가우스 분포라고도 하며 가장 널리 사용되는 연속확률분포이다. 중앙한계정리(CLT)는 독립적이고 동일하게 분포된 ...2025.11.17
-
이항분포와 초기하분포의 차이점 분석2025.11.181. 이항분포(Binomial Distribution) 이항분포는 동일한 실험을 여러 번 반복하여 각 시행마다 성공과 실패의 두 가지 결과가 나오는 경우에 적용되는 분포입니다. 베르누이 시행을 n번 수행하여 성공횟수를 k번 얻을 확률을 나타내며, 각 시행에서의 성공 확률이 고정되어 있습니다. 이항분포는 이항검정, 통계적 추론, 회귀분석 등에 사용되며, 성공확률이 일정하고 시행 횟수가 정해진 경우에 주로 활용됩니다. 2. 초기하분포(Hypergeometric Distribution) 초기하분포는 모집단에서 무작위로 추출한 표본으로부터...2025.11.18
