총 85개
-
중공실 광중합 예레2025.01.131. 광중합 광중합은 열중합과 달리 빛에너지로 라디칼을 생성하여 중합하는 방식입니다. 자외선이나 가시광선을 사용하여 단위체를 활성화시켜 연쇄적인 중합반응이 일어나게 됩니다. 광중합은 열중합과 달리 선택적인 중합이 가능하며, 광원을 제거하는 것만으로도 반응 종결을 조절할 수 있다는 장점이 있습니다. 2. 중합 방식 광중합은 열중합과 달리 빛에너지를 사용하여 라디칼을 생성하고 중합반응을 일으킵니다. 이를 통해 선택적인 중합이 가능하며, 광원 제거만으로도 반응 종결을 조절할 수 있습니다. 이는 열중합에서는 어려운 특성입니다. 3. 공중합...2025.01.13
-
A+ 고분자화학실험 벌크중합 실험보고서2025.04.301. 자유 라디칼 중합 자유 라디칼 중합이란, 자유 라디칼(Free radical)을 이용하여 단량체를 중합하는 고분자 합성방법 중의 하나이다. 이는 C=C 이중결합을 보유하고 있는 분자인 비닐계 고분자의 중합에 이용되는 가장 유용하고 보편적인 방법이다. 예를 들어, Polystyrene, Polymethylmethacrylaye, Poly(vinylacetate), Polybutadiene, branched PE 등이 그것이다. 중합하고자 하는 단량체에 라디칼을 처음 형성시키기 위해서 라디칼 개시제(Initiator)를 이용하는데...2025.04.30
-
고분자합성실험 - 메틸메타크릴레이트의 괴상 중합 실험 A+ 보고서2025.01.171. 벌크 중합 벌크(bulk) 중합은 괴상 중합이라고도 하며 용매나 분산 매체를 사용하지 않고 단량체만으로 또는 소량의 개시제를 가하여 중합체를 얻는 라디칼 중합법을 말한다. 벌크 중합은 기체 및 고체 상태에서도 가능하지만 주로 액체 상태에서 행해지는 경우가 많다. 이 중합 방법은 간편하면서도 고순도 및 높은 분자량의 중합체를 얻을 수 있는 장점이 있지만, 반응 시 열 제거가 어렵고 경우에 따라서는 생성된 중합체가 단량체에 용해되지 않으며 반응계의 점도가 높아 중합에 기술적인 문제점이 뒤따른다. 2. 벌크 중합 개시제 벌크 중합에...2025.01.17
-
styrene 합성(라디칼 중합) 결과레포트2025.05.101. 현탁중합을 이용한 폴리스타이렌 제조 이번 실험은 현탁중합을 이용하여 스타이렌 단량체에 개시제를 넣어 라디칼 중합이 어떻게 일어나는 지 관찰하는 styrene 합성 실험이었습니다. 현탁안정제(PVA)를 넣는 이유는 중합과정 중 뭉치는 것을 방지하여 폴리스타이렌이 더 잘 만들어질 수 있도록 하기 위해서입니다. 또한 적절한 교반 속도가 중요한데, 이는 단량체와 용매의 균일계에서 녹지 않는 고분자의 입자 생성 등에서 교반이 매우 중요한 역할을 하기 때문입니다. 2. 라디칼 중합 메커니즘 이번 실험에서는 라디칼 중합 메커니즘을 관찰할 ...2025.05.10
-
중공실 PMMA 벌크중합2025.01.131. 라디칼 중합 메커니즘 라디칼 중합 반응은 개시반응, 전개반응, 종결반응으로 총 3단계로 진행됩니다. 개시 반응에서는 개시제 AIBN에 열을 가하면 라디칼이 생기면서 nitrogen 가스를 생성하고, 생성된 라디칼과 첫 번째 단량체 MMA가 반응하여 MMA의 탄소에 라디칼이 생깁니다. 전개 반응에서는 개시 반응한 뒤로 연쇄적으로 MMA를 붙여 넣어서 고분자 사슬을 만듭니다. 종결 반응은 라디칼이 소멸되는 단계로, Methyl methacrylate는 보통 recombination이 아닌 disproportionation반응을 통...2025.01.13
-
PVAc 및 PVA 합성 실험2025.11.171. 유화 중합(Emulsion Polymerization) 유화 중합은 라디칼 중합의 한 유형으로, 물을 용매로 단량체와 계면활성제를 포함하는 에멀젼이 개시제로 사용된다. 약 1 μm 이하의 작은 입자 지름의 물질이 분산하고 있는 시스템을 에멀젼이라 한다. 장점으로는 반응온도 조절이 용이하고, 독성이 적으며 반응물의 점도가 낮아 생성물의 교반이나 이송이 쉽다. 단량체는 계면활성제와 용매에 분산되어 큰 물방울을 형성하고, 과량의 계면활성제는 물에 미셀을 형성한다. 중합 반응이 진행되며 생성되는 라텍스는 입자 크기가 점점 커진다. 2...2025.11.17
-
물리화학실험 화학반응속도 반응차수의 결정 결과보고서2025.01.221. 화학반응속도 실험을 통해 ascorbic acid와 methylene blue의 반응에 대한 반응차수를 결정하였다. ascorbic acid의 반응차수는 0.6734로 이론 반응차수인 1과 약 32.66% 오차를 보였고, methylene blue의 반응차수는 0.3101로 이론 반응차수인 1과 68.99% 오차를 보였다. 오차의 원인으로는 반응 종결 시점 관찰의 한계, 정확하지 않은 농도 용액 사용, 온도 변화 등이 있었다. 또한 용매의 유전상수 변화에 따른 반응속도 변화를 관찰하였는데, 유전상수가 클수록 반응이 더 빠르게 ...2025.01.22
-
PVAc와 PVA 합성 실험 결과 보고서2025.11.171. 중합 방법의 분류 중합은 단량체가 화학적으로 결합하여 고분자를 생성하는 반응이며, 4가지 주요 방법이 있다. Bulk 중합은 용매 없이 진행되는 가장 간단한 방법으로 순도가 높은 생성물을 얻을 수 있으나 열 조절이 어렵다. Suspension 중합은 단량체를 미세한 방울로 분산시켜 반응열을 조절하기 쉽다. Emulsion 중합은 계면활성제를 사용하여 약 1μm 이하의 입자를 분산시키며 제어가 용이하고 높은 중합속도를 가진다. Solution 중합은 불활성 용매를 사용하여 열과 점도 조절이 용이하나 반응속도가 감소한다. 2. P...2025.11.17
-
A+ 졸업생의 광중합 결과레포트2025.01.161. 광중합 이번 실험은 반응 시 열 대신 빛에 의한 에너지 공급으로 라디칼을 생성하는 광중합 실험을 하였다. 광중합은 광원을 제거함으로써 반응 종결 조절이 가능했다. 광중합을 이용하여 2개의 단량체를 구성단위로 하고 있는 공중합체 고분자를 중합하였는데, 여러 가지 공중합체의 종류 중에서도 불규칙한 공중합체를 중합하였다. 2. NMR 분석 H-NMR DATA 분석을 통해 중합된 고분자의 구조를 예상할 수 있다. 2-EHA 과 2-HEA를 광 개시제와 중합하여 random copolymer가 합성되게 되는데 NMR 기기를 사용하여 관...2025.01.16
-
제거반응_메틸메타크릴레이트(Methylmethacrylate)의 괴상(bulk) 중합 실험 결과보고서2025.01.131. 메틸메타크릴레이트(Methylmethacrylate)의 괴상(bulk) 중합 이번 실험에서는 MMA를 단량체로 이용해 벌크중합(Bulk polymerization)을 통하여 고분자인 PMMA를 중합하여 라디칼 중합 중 벌크 중합의 특징에 대해서 알아보았다. 벌크중합은 고분자 합성공정 중 가장 단순하고 직접적인 방법이다. 단량체와 단량체의 녹는 소량의 개시제, 그리고 경우에 따라 분자량 조절을 위한 사슬이동제만을 투입하며, 반응이 진행됨에 따라 단량체와 고분자만이 반응계의 구성요소가 된다. 벌크중합의 최대의 장점은 불순물이 포함...2025.01.13
