총 40개
-
5학년 수학 평균과 가능성 창의적인 교수학습지도안(설계, 세부지도안, 학습지 등 첨부)2025.01.031. 평균 평균은 자료들의 대표값을 정하는 중요한 개념이며, 자료를 통계적으로 분석하는 데 기초가 되는 개념이다. 학생들은 주어진 상황 및 자료들에서 평균의 필요성을 느끼고 평균의 개념을 이해하며, 다양한 방법으로 평균을 구하는 법을 학습한다. 또한 평균을 활용하여 실생활 문제를 해결할 수 있다. 2. 가능성 가능성은 어떠한 상황에서 특정한 일이 일어날 수 있는 정도를 말한다. 학생들은 실생활 상황에서 일이 일어날 가능성을 '불가능하다', '~아닐 것 같다', '반반이다', '~일 것 같다', '확실하다' 등으로 말로 표현하고 비교...2025.01.03
-
30개 도시의 인구수와 고용인구 분석2025.05.051. 전체 도시의 인구수와 고용인구 전체 도시의 인구수와 고용인구의 평균, 표준편차, 분산을 계산했습니다. 인구수 평균은 4069.60명, 표준편차는 3762.49명, 분산은 14169906.76입니다. 고용인구 평균은 1725.40명, 표준편차는 1735.50명, 분산은 3010579.13입니다. 대부분의 도시가 5000명 이하의 인구수와 고용인구를 가지고 있으며, 일부 도시에서 매우 높은 수치를 보였습니다. 2. 상업도시와 공업도시의 인구수와 고용인구 상업도시와 공업도시 각각의 인구수와 고용인구의 평균, 표준편차, 분산을 계산했...2025.05.05
-
5학년 2학기 수학 부진아 지도계획2025.05.011. 수의 범위와 어림하기 수의 범위와 어림하기에 대한 내용을 다룹니다. 학생들이 수의 범위를 이해하고 어림하는 능력을 기를 수 있도록 지도합니다. 2. 분수의 곱셈 분수의 곱셈에 대한 내용을 다룹니다. 학생들이 분수의 곱셈 개념을 이해하고 문제를 해결할 수 있도록 지도합니다. 3. 합동과 대칭 합동과 대칭에 대한 내용을 다룹니다. 학생들이 도형의 합동과 대칭 개념을 이해하고 활용할 수 있도록 지도합니다. 4. 소수의 곱셈 소수의 곱셈에 대한 내용을 다룹니다. 학생들이 소수의 곱셈 개념을 이해하고 문제를 해결할 수 있도록 지도합니다...2025.05.01
-
기대치와 분산의 개념을 설명한 후, 사례를 제시하여 평균(기대치)와 분산을 도출하고, 이항분포의 평균2025.05.121. 평균의 의미 통계(Statistics)란 사회 현상이나 자연 현상을 관찰한 결과를 계량화하고 그 데이터를 모아 분석하며 유의미한 결론을 도출하는 행위를 의미하는 바 오늘날 거의 모든 학문에서 통계가 사용되고 있다고 보아도 과언이 아니다. 통계학에서 일상적으로 사용되는 개념 중 하나가 바로 평균과 분산인데, 먼저 평균(mean)이란 모집단의 특성을 파악하는 개념 중 하나인 대표값 –즉 자료들의 중심에 존재하는 값의 일종이다. 2. 분산의 의미 한편 분산(variation)이란, 대표값과 함께 모집단의 특성을 파악하는 개념 중 하...2025.05.12
-
경영통계학 (A) 과제 제출합니다. 주제 - 고객 대기시간 분석2025.01.241. 평균, 중앙치, 최빈치 계산 평균은 2.866분, 중앙치는 2.7분, 최빈치는 2.6분 4회로 계산되었습니다. 평균은 극단값의 영향을 받지만, 중앙치는 그렇지 않아 이 데이터에서는 중앙치가 가장 적절한 대표값이라고 판단됩니다. 2. 범위, 분산, 표준편차, 변동계수 계산 범위는 2.5분(4.3분 - 1.8분), 분산은 0.464, 표준편차는 0.681분, 변동계수는 23.761%로 계산되었습니다. 이를 통해 고객 대기시간의 편차와 변동성을 확인할 수 있습니다. 1. 평균, 중앙치, 최빈치 계산 평균, 중앙치, 최빈치는 데이터의...2025.01.24
-
30개 도시의 인구수와 고용인구 통계 분석2025.01.231. 전체 도시의 인구수와 고용인구 통계 30개 전체 도시의 인구수와 고용인구에 대한 평균, 표준편차, 분산을 계산한 결과, 전체 도시의 평균 인구수는 22.23만 명, 평균 고용인구는 13.5만 명으로 나타났다. 인구수의 표준편차는 10.11, 분산은 102.2이며, 고용인구의 표준편차는 4.79, 분산은 22.94로 나타나 도시 간 편차가 큰 것으로 분석되었다. 2. 공업도시와 상업도시의 비교 분석 공업도시와 상업도시의 인구수와 고용인구에 대한 통계 분석 결과, 상업도시가 공업도시에 비해 평균 인구수(23.9만 명 vs. 20....2025.01.23
-
[중심경향치] 중심경향의 측정2025.05.111. 평균 평균은 관측치들을 모두 합한 후에 관측치 수로 나누어 계산하는 산술평균으로서, 일상생활에서도 가장 널리 사용되는 계산방법이다. 평균은 구간측정과 비율측정 수준의 자료에만 적용될 수 있으며, 소수의 특이치의 영향을 많이 받는 문제점이 있다. 2. 중앙값 중앙값은 표본의 관측치들을 크기순으로 나열할 때 중앙에 위치한 관측치가 된다. 중앙값은 순서만을 고려하기 때문에 특이치의 크기와는 무관하게 되어, 평균에 비하여 안정적일 수 있다. 3. 최빈치 최빈치는 빈도분포에서 빈도수가 가장 많은 관측치를 의미한다. 명목측정수준의 자료에...2025.05.11
-
데이터를 대표하는 값들의 종류와 특징에 대해 설명하고, 그 사례를 제시하시오2025.05.081. 평균(Average) 평균은 데이터의 총합을 데이터의 개수로 나눈 값으로, 데이터 전체를 대표하는 가장 기본적인 값 중 하나이며 데이터의 중심을 대표한다. 하지만 이상치(outlier)가 있는 경우 데이터의 특성을 왜곡할 수 있다. 2. 중앙값(Median) 중앙값은 데이터를 크기순으로 정렬했을 때 가장 중앙에 위치하는 값으로, 데이터의 분포와 상관없이 항상 존재하며 이상치에 대한 영향을 받지 않는다. 3. 최빈값(Mode) 최빈값은 데이터에서 가장 자주 나타나는 값을 의미하며, 연속형 데이터에서는 사용하지 않고 이산형 데이터...2025.05.08
-
현대자동차 모빌리티 기술인력 자소서2025.05.061. 이산확률분포 이산확률분포란 이산확률변수에 대응하는 확률분포를 말한다. 확률변수가 취하는 값이 이산집합이어서 유한집합이거나 가산일 때, 이에 대응하는 확률분포를 이산확률분포라고 한다. 이산확률변수는 확률질량함수가 확률분포를 결정한다. 이항분포, 기하분포, 포아송 분포, 음이항분포 등이 대표적인 이산확률분포이다. 2. 이항분포 이항분포는 연속된 n번의 독립적 시행에서 각 시행이 확률 p를 가질 때의 이산 확률 분포이다. 이항분포의 네가지 조건으로는 첫째, n회의 동일한 실험(시도)이 있다. 둘째, 매번의 시도는 성공/실패, 가부,...2025.05.06
-
경영통계학 ) (a) 영화 30개를 무작위로 골라 영화 제목과 상영시간(분)을 기록하시오. (b) 빈포분포표와 히스토그램을 작성하고, 히스토그램을 설명하시오. (c) 평균, 중앙값, 최빈값을 계산하고, 이 중 가장 좋은 중2025.05.071. 경영통계학 경영은 일반적인 사람의 기준에서 봤을 때 기업을 대상으로 하므로 계량화하거나 지표로 나타내는 것에는 한계가 있다. 경영 성과에 대해서는 수익률이나 상장기업은 주가로 그 수치를 나타낼 수 있지만 마케팅적 측면에서 소비자의 선호나 인적 자원 관리 측면에서 직원의 성과 정도를 수치화하는 것은 쉽지 않다. 그리고 기업 내부에서 조사하는 것이기 때문에 객관적인 답이 도출되지 않을 수도 있다. 이러한 이유로 통계학이 경영에서 관심 받고 있는 이유이다. 통계학은 경영의 다양한 분야에서 활용할 수 있다. 먼저 생산하는 기업이라면 ...2025.05.07
