총 23개
-
생명과학에 적용되는 미적분2024.12.301. 생명현상과 미적분 1.1. 개체군의 생장곡선 그래프 개체군의 생장곡선은 시간에 따른 개체 수의 변화를 나타내는 그래프이다. 이 그래프는 크게 두 가지 형태로 구분된다. 첫 번째는 이론적인 생장곡선으로, 계속해서 증가하는 J자형 모양을 보인다. 이는 개체에게 필요한 자원이나 서식 환경에 제한이 없는 이상적인 상황에서의 성장을 의미한다. 두 번째는 실제 생장곡선으로, 시간이 지남에 따라 특정 수준에 수렴하는 S자형 모양을 나타낸다. 이는 환경수용력이라는 한계치에 도달하면서 개체의 성장세가 감소하는 현상을 반영한다. 즉, 개...2024.12.30
-
로지스틱 방정식 조사 보고서2024.12.301. 로지스틱 방정식 1.1. 주제 선정 이유 미적분 수업시간에 변곡점을 배우면서 그래프의 모양이 바뀌는 지점인 변곡점에 대해서 알게 되었다. 문제를 풀 때 방정식을 미분하고 변곡점을 찾는 과정을 통해 그래프를 그릴 수 있게 되었다. 그래프를 그리다 보니 생명과학1 시간에 배운 생장곡선 그래프의 모양이 생각났다. 이 그래프를 보면 특정 위치에서 아래로 볼록->위로 볼록 모양으로 바뀌는 것을 확인할 수 있다. 이 방정식을 우리가 배운 변곡점 개념과 연관시킬 수 있을 것 같아 주제를 정하게 되었다. 1.2. 탐구를 통해 알고 싶은 점...2024.12.30
-
생명과학에 적용되는 미적분2024.10.161. 시그모이드 함수(로지스틱 방정식)를 활용한 생명현상 분석 1.1. 로지스틱 방정식 활용1: 개체군의 생장곡선 개체군이란 특정 시기에 주어진 지역에서 서로 상호작용하는 한 종의 개체들로 구성되고 밀도, 성비, 연령구조, 출생률, 이입률, 사망률, 이출률 등 다양한 고유 특성을 갖는 단체를 의미한다. 이러한 개체군의 개체수의 증가 곡선을 나타낸 것이 개체군의 생장곡선이다. 자연 상태에서 개체군의 크기는 출산과 사망, 종 내 상호작용 등에 의해 변화한다. 출산율이 사망률보다 크면 개체군의 크기가 증가하고, 반대인 경우 개체군의 ...2024.10.16
-
로지스틱2024.10.291. 로지스틱 방정식을 활용한 여러 생명 현상 분석 1.1. 생장곡선 그래프 생장곡선 그래프는 시간에 따른 개체의 수를 나타낸 것이다. 개체 수가 계속 늘어나는 이론적 생장곡선과 달리, 실제 생장 곡선은 환경의 저항으로 인해 시간이 지남에 따라 개체수가 유한한 값으로 수렴하는 s자형 그래프를 보인다. 이러한 실제 생장 곡선은 '로지스틱 방정식(logistic equation)'이라는 미분 방정식으로 모델링될 수 있다. 로지스틱 방정식은 개체수가 0에서 증가하기 시작하여 점점 증가율이 올라가다가 어느 순간부터 감소하는 특징을 가...2024.10.29
-
미적,수2,세특2024.11.231. 미분을 이용한 로지스트 방정식 1.1. 개체군 증가 모델 1.1.1. 이론적 생장곡선(지수형) 이론적 생장곡선(지수형)이란 생물의 개체수가 이상적인 환경조건에서 생식 활동에 제약을 받지 않고 계속 번식한다면, 개체수가 기하급수적으로 증가하여 J자 모양의 생장 곡선을 나타내는 것을 말한다. 이론적 생장곡선을 유도하는 과정은 다음과 같다. 개체수가 t시간에 n, t+dt시간에 n+dn이라고 하면, 단위 시간당 증가량은 dn/dt로 나타낼 수 있다. 개체수가 이상적인 조건에서 증가한다면 이 증가량은 그 시점의 개체수 n에 비...2024.11.23
-
미적분 생명2024.11.291. 화학반응과 미적분 1.1. 화학반응의 속도와 미적분 우리 일상생활에서는 주변에서 일어나는 많은 화학반응을 볼 수 있다. 연소반응, 음식물을 익히는 과정, 빵을 굽는 등의 화학반응이 대표적이다. 이러한 화학반응은 우리에게 익숙하여 화학반응임을 인지하지 못하고 지나치는 경우가 많다. 그러나 우리 몸속에서도 끊임없이 화학반응이 일어나고 있는데, 이러한 화학반응에서 미적분의 개념이 활용된다는 사실은 흥미롭다"." 화학반응의 속도는 일정한 시간 동안의 농도 변화량을 시간으로 나눈 값으로 정의된다. 예를 들어, 포도당의 분해 반응을 ...2024.11.29
-
로지스틱 방정식2024.11.291. 로지스틱 방정식을 활용한 생명현상 분석 1.1. 개체군의 생장곡선 그래프 개체군의 생장곡선 그래프는 시간에 따른 개체 수의 변화를 나타내는 그래프이다. 생장곡선에는 크게 두 가지 유형이 있는데, 이론적 생장곡선과 실제 생장곡선이다. 이론적 생장곡선은 계속해서 증가하는 J자형 그래프를 나타내지만, 실제 생장곡선은 시간이 지남에 따라 환경수용력에 수렴하는 S자형 그래프를 보인다. 실제 생장곡선이 S자형을 나타내는 이유는 환경의 저항 때문이다. 초기에는 개체 수가 급격히 증가하지만, 어느 한계치에 다다르면 개체 수가 유지되는 양...2024.11.29
-
시그모이드2025.08.081. 시그모이드 함수와 로지스틱 방정식의 활용 1.1. 생명과학 분야에서의 활용 1.1.1. 개체군 생장곡선 분석 생명과학 분야에서 로지스틱 방정식은 개체군의 생장 과정을 잘 나타낼 수 있다. 개체 수가 증가함에 따라 처음에는 완만한 증가를 보이다가 점차 가파르게 증가하다가 일정 수준에 도달하면 증가세가 둔화되는 S자 형태의 곡선을 그리게 된다. 이러한 개체군 생장곡선은 로지스틱 방정식으로 표현할 수 있는데, 이 방정식은 개체수의 변화를 시간에 따라 모델링한다. 로지스틱 방정식은 초기에는 개체 수 증가율이 작지만 점차 증가하...2025.08.08
-
약물농도와 지수함수의 관계2025.07.171. 서론 1.1. 약물농도와 지수함수의 관계 약물의 농도와 인체 내 반응 사이의 관계는 일반적으로 지수함수의 형태를 나타낸다. 이는 약물의 투여량이 증가함에 따라 생물학적 활성도 급격히 증가하는 특성을 나타낸다. 지수함수는 작은 입력값의 변화에도 매우 큰 출력값의 변화를 보이는데, 이는 약물 농도의 변화에 따른 인체 반응의 민감한 변화를 잘 설명할 수 있다. 예를 들어 일반적인 약물의 경우 약물 농도가 2배 증가하면 생물학적 효과가 4배 증가하는 식의 관계를 보인다. 이처럼 지수함수는 약물 농도와 생물학적 반응 사이의 비선형...2025.07.17
-
SIR모델의 수학적원리2025.05.201. 서론 1.1. SIR모델의 개념과 원리 SIR모델의 개념과 원리는 다음과 같다. SIR 모델은 전염병의 전파 과정을 설명하는 대표적인 역학 모형이다. SIR 모델은 S(susceptible, 취약자), I(infected, 감염자), R(recovered, 회복자)의 3개 집단으로 구성된다. 취약자는 전염병에 감염될 가능성이 있는 집단이고, 감염자는 병에 감염되어 다른 사람을 감염시킬 수 있는 집단이며, 회복자는 병에서 회복된 집단이다. 이 세 집단의 수적 변화를 시간에 따라 미분 방정식으로 나타낼 수 있다. 구체적으로 감염...2025.05.20
