PARTNER
검증된 파트너 제휴사 자료

판별분석에 의한 기업부실예측력 평가: 서울지역 특1급 호텔 사례 분석 (Evaluation of Corporate Distress Prediction Power using the Discriminant Analysis: The Case of First-Class Hotels in Seoul)

7 페이지
기타파일
최초등록일 2025.07.15 최종저작일 2016.10
7P 미리보기
판별분석에 의한 기업부실예측력 평가: 서울지역 특1급 호텔 사례 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 17권 / 10호 / 520 ~ 526페이지
    · 저자명 : 김시중

    초록

    본 연구는 서울지역 특1급 호텔을 대상으로 2015년도 재무비율을 변수로 활용하여 표준재무비율을 산출하며, 다변량판별분석에 의한 부실예측모형 개발 및 부실예측력 평가에 목적이 있다. 서울소재 19개 특1급 호텔의 14개 재무비율을 분석대상으로 선정하여 실증분석을 실시하였으며 분석결과는 다음과 같다. 첫째, 분석결과 우수기업과 부실기업을 판별하는 7개 재무비율은 유동비율, 차입금의존도, ㅊ영업이익대비 이자보상비율, 매출액영업이익율, 자기자본순이익율, 영업현금흐름비율, 총자산회전율로 나타났다. 둘째, 7개 재무비율을 활용하여 우수기업과 부실기업을 판별하는 판별함수를 다변량판별분석에 의해 추정하였으며, 추정된 판별함수를 실제 소속집단과 예측집단으로 분류가 가능한가의 예측력 검정 결과, 예측 판별력의 정확도는 87.9%로 분석되었다. 셋째, 추정된 판별함수의 예측 판별력의 정확도 검증결과 판별분석에 의한 부실예측모형의 예측력은 78.95%로 분석되었다. 이러한 분석결과, 호텔 경영진은 호텔기업의 부실기업집단을 판별하는 7개 재무비율을 중점적으로 관리해야 함을 시사하고 있다. 또한 호텔기업이 타 산업과는 뚜렷한 재무구조의 차이와 부실예측 지표가 상이하며, 이에 호텔기업 대상의 신용평가시스템 구축 시 호텔기업의 재무적 특성을 반영한 시스템 구축이 필요함을 시사하고 있다.

    영어초록

    This study aims to develop a distress prediction model, in order to evaluate the distress prediction power for first-class hotels and to calculate the average financial ratio in the Seoul area by using the financial ratios of hotels in 2015. The sample data was collected from 19 first-class hotels in Seoul and the financial ratios extracted from 14 of these 19 hotels. The results show firstly that the seven financial ratios, viz. the current ratio, total borrowings and bonds payable to total assets, interest coverage ratio to operating income, operating income to sales, net income to stockholders' equity, ratio of cash flows from operating activities to sales and total assets turnover, enable the top-level corporations to be discriminated from the failed corporations and, secondly, by using these seven financial ratios, a discriminant function which classifies the corporations into top-level and failed ones is estimated by linear multiple discriminant analysis. The accuracy of prediction of this discriminant capability turned out to be 87.9%. The accuracy of the estimates obtained by discriminant analysis indicates that the distress prediction model's distress prediction power is 78.95%. According to the analysis results, hotel management groups which administrate low level corporations need to focus on the classification of these seven financial ratios. Furthermore, hotel corporations have very different financial structures and failure prediction indicators from other industries. In accordance with this finding, for the development of credit evaluation systems for such hotel corporations, there is a need for systems to be developed that reflect hotel corporations' financial features.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 31일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:25 오후