• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증 (Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain)

16 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2022.12
16P 미리보기
PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증
  • 미리보기

    서지정보

    · 발행기관 : 한국농림기상학회
    · 수록지 정보 : 한국농림기상학회지 / 24권 / 4호 / 218 ~ 233페이지
    · 저자명 : 최명주, 안중배, 김영현, 정민경, 심교문, 허지나, 조세라

    초록

    본 연구에서는 Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF)에서 생산된 hindcast 자료(1986∼2020)를 이용하여 우리나라의 주요 곡물 중 하나인 콩의 생육단계별 고온해 및 저온해 발생일수의 예측성을 평가하였다. 예측성을 평가하는 방법으로는 Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), Heidke Skill Score (HSS)이다. 이를 위해 먼저 콩의 고온해 및 저온해를 정의하는 변수인 일 최고기온(Tmax) 및 일 최저기온(Tmin)의 모의성능을 검증하였다. 그 결과 1∼5월(01RUN∼05RUN)의 초기조건을 가지고 시작하는 월에 따라 다소 차이가 있지만, Variance Scaling 방법을 적용하여 보정한 결과가 보정전보다 관측과 유사하게 나타났으며, 보정한 3∼10월의 Tmax 및 Tmin에 대한 모의성능은 전반적으로 01RUN∼05RUN에 Simple Composite Method (SCM)을 적용하여 평균한 결과(ENS)에서 높게 나타났다. 또한, 콩의 생육시기별고온해 및 저온해 발생일수의 지역적 패턴과 특성을 관측과 비교하였을 때 모형이 잘 모의하고 있다. ENS에서 콩의 고온해(저온해)에 대한 HR과 HSS는 생육시기별로 0.45∼0.75, 0.02∼0.10(0.49∼0.76, -0.04∼0.11)의 범위를 가진다. 결론적으로, PNU CGCM-WRF chain의 01RUN∼05RUN 및 ENS는 우리나라 콩의 생육시기별 고온해 및 저온해를 예측할 수 있는 성능을 가지고 있다.

    영어초록

    The long-term (1986∼2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45∼0.75, 0.02∼0.10 (0.49∼0.76, -0.04∼0.11) during each growth stage. In conclusion, 01RUN∼05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국농림기상학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:54 오전