• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색 (The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval)

8 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2011.10
8P 미리보기
퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 21권 / 5호 / 637 ~ 644페이지
    · 저자명 : 임지혜, 이준환

    초록

    음원이 디지털화 되면서 쉽게 음악을 구매하고 들을 수 있게 되었다. 하지만 많은 음악 중에서 음악가, 장르, 제목, 앨범 타이틀 등 전통적인 음악 정보를 이용하여 사용자들이 자신의 취향에 맞는 음악을 찾는 데는 여전히 어려움이 있다. 이러한 어려움을 해소하기 위해 내용기반 음악검색과 감성기반 음악검색 방법 등이 제안되고 개발되고 있다. 본 논문에서는 이러한 어려움을 해소하기 위한 감성기반 음악 검색방법에서 다차원 벡터형태의 MPEG-7 저수준 오디오 서술자들의 감성기반 검색에서의 중요도를 결정하기 위한 새로운 방법을 제안하였다. 제안된 방법에서는 상호간에 대립되는 감성을 대표되는 음악들의 유사성을 다차원 서술자 관점에서 측정하고 이 유사관계를 러프 근사화와 군집 내/군집 간의 유사성 비율을 이용하여 서술자의 중요성을 결정한다. 중요성을 바탕으로 결정된 가중치는 여러 개의 오디오 서술자들의 유사성을 총체화하는데 이용되며 이를 활용하여 감성기반 음악검색을 수행한다. 제안된 방법은 내용기반 음악 검색을 기반으로 한 감성기반 음악검색 구조에서 실험한 결과 평균 검색 개수측면에서 기존의 휴리스틱 방법보다 좋은 검색 결과를 나타내었다.

    영어초록

    Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:28 오전