PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용 (Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems)

13 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2017.12
13P 미리보기
딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 33권 / 6호 / 1061 ~ 1073페이지
    · 저자명 : 송아람, 김용일

    초록

    본 연구는 4차 산업의 핵심기술인 인공지능과 환경공간정보의 융합을 통한 정보생산 및 활용가능성을 제시하고자 대표적인 딥러닝(deep-learning) 기법인 CNN(Convolutional Neural Network)을 이용한 영상분류를 수행하였다. CNN은 학습을 통해 스스로 분류기준에 따른 커널의 속성을 결정하며, 최적의특징영상(feature map)을 추출하여 화소를 분류한다. 본 연구에서는 CNN network를 구성하여 기존의 영상처리 기법으로 해결이 어려웠던 분광특성이 유사한 물질간의 분류 및 GIS속성정보에 따른 분류를 수행하였으며, 항공초분광센서인 CASI(Compact Airborne Spectrographic imager)와 AISA(Airborne Imaging Spectrometer for Application)로 취득된 영상을 이용하였다. 실험대상지역은 총 3곳이며, Site 1과 Site 2 는 감자, 양파, 벼 등의 다양한 농작물을 포함하며, Site 3는 단독주거시설, 공동주거시설 등 세분류 토지피복도의 분류 항목으로 구성된 건물을 포함한다. 실험결과, 분류 정확도 96%, 99%로 농작물을 종류에 따라분류하였으며, 96%의 정확도로 건물을 용도에 따라 분류하였다. 본 연구의 결과를 환경공간정보 서비스에활용하기 위하여 계절별 농작물의 종류를 제공할 수 있는 환경주제도를 제안하였으며, 기존의 토지피복도와최신 GIS자료를 이용한 세분류 토피지복도 제작 및 갱신 가능성을 확인하였다.

    영어초록

    In this study, images were classified using convolutional neural network (CNN)—a deep learning technique—to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager (CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops, such as potato, onion, and rice. Site 3 included different buildings, such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 13일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:04 오후