• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

초분광 표적 탐지를 위한 L2,1-norm Regression 기반 밴드 선택 기법 (Band Selection Using L2,1-norm Regression for Hyperspectral Target Detection)

13 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2017.10
13P 미리보기
초분광 표적 탐지를 위한 L2,1-norm Regression 기반 밴드 선택 기법
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 33권 / 5호 / 455 ~ 467페이지
    · 저자명 : 김주창, 양유경, 김준형, 김준모

    초록

    초분광 영상을 이용한 표적 탐지를 수행할 때에는 인접한 분광 밴드의 중복성의 문제 및 고차원 데이터로 인해 발생하는 방대한 계산량의 문제점을 해결하기 위한 특징 추출 과정이 필수적이다. 본 연구는 기계 학습 분야의 특징 선택 기법을 초분광 밴드 선택에 적용하기 위해 L2,1-norm regression 모델을 이용한새로운 밴드 선택 기법을 제안하였으며, 제안한 밴드 선택 기법의 성능 분석을 위해 표적이 존재하는 초분광영상을 직접 촬영하고 이를 바탕으로 표적 탐지를 수행한 결과를 분석하였다. 350 nm~2500 nm 파장 대역에서 밴드 수를 164개에서 약 30~40개로 감소시켰을 때 Adaptive Cosine Estimator(ACE) 탐지 성능이유지되거나 향상되는 결과를 보였다. 실험 결과를 통해 제안한 밴드 선택 기법이 초분광 영상에서 탐지에 효율적인 밴드를 추출해 내며, 이를 통해 성능의 감소 없이 데이터의 차원 감소를 수행할 수 있어 향후 실시간표적 탐지 시스템의 처리 속도 향상에 도움을 줄 수 있을 것으로 보인다.

    영어초록

    When performing target detection using hyperspectral imagery, a feature extraction process is necessary to solve the problem of redundancy of adjacent spectral bands and the problem of a large amount of calculation due to high dimensional data. This study proposes a new band selection method using the L2,1-norm regression model to apply the feature selection technique in the machine learning field to the hyperspectral band selection. In order to analyze the performance of the proposed band selection technique, we collected the hyperspectral imagery and these were used to analyze the performance of target detection with band selection. The Adaptive Cosine Estimator (ACE) detection performance is maintained or improved when the number of bands is reduced from 164 to about 30 to 40 bands in the 350 nm to 2500 nm wavelength band. Experimental results show that the proposed band selection technique extracts bands that are effective for detection in hyperspectral images and can reduce the size of the data without reducing the performance, which can help improve the processing speed of real-time target detection system in the future.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:21 오전