PARTNER
검증된 파트너 제휴사 자료

노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구 (A study on non-local image denoising method based on noise estimation)

6 페이지
기타파일
최초등록일 2025.07.05 최종저작일 2017.05
6P 미리보기
노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 18권 / 5호 / 518 ~ 523페이지
    · 저자명 : 임재성

    초록

    본 논문은 비지역적(non-local)방법에 기반한 적응적 디노이징 방법을 제안한다. 비지역적 알고리즘은 부가적 백색 잡음(additive white Gaussian noise, AWGN)을 제거하는데 효과적이다. 노이즈 제거를 위해 비지역적 방법을 적용할 때 노이즈 수준에 따라 디노이징 파라미터가 조절될 필요가 있었다. 그러므로, 제안하는 방법은 입력 노이즈 수준에 따라 최적의 디노이징 파라미터를 제공하는 것이다. 제안하는 방법은 크게 두 가지 부분으로 나뉜다. 첫 번째로는 오프라인 과정과 온라인 과정이다. 오프라인 과정에서는 노이즈 수준과 디노이징 파라미터 간의 관계를 비지역적 기법을 이용하여 분석해본다. 다양한 디노이징 파라미터들이 비지역적 알고리즘에 적용되며 이에 대한 이미지이에 대한 이미지의 퀄리티를 분석하기 위해서 SSIM 지표가 사용된다. 주어진 노이즈 수준에서 최적 디노이징 파라미터를 가장 높은 SSIM일 때 선택한다. 온라인 과정에서는 노이즈 수준을 실 시간으로 추정하여 최적의 디노이징 파라미터를 적용하여 비지역적 필터링을 수행한다. 실험 결과에서 보는 바와 같이, 제안하는 방법은 정확하게 노이즈 수준을 추정했고, 이미지 디테일을 보존하면서 AWGN 노이즈를 제거 했다. 이에 따른 실험 결과로 노이즈 추정 정확도는 90.0%, 복원된 이미지에서 높은 PSNR과 SSIM수치를 보였다.

    영어초록

    This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 01일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:53 오전