PARTNER
검증된 파트너 제휴사 자료

상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측 (Protein-Protein Interaction Prediction using Interaction Significance Matrix)

10 페이지
기타파일
최초등록일 2025.07.04 최종저작일 2009.10
10P 미리보기
상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 10호 / 851 ~ 860페이지
    · 저자명 : 장우혁, 정석훈, 정휘성, 현보라, 한동수

    초록

    최근 계산을 통한 단백질 상호작용 예측 기법 중, 단백질 쌍이 포함하고 있는 도메인들 사이의 관계에 중점을 둔 도메인 정보 기반 예측 기법들이 다양하게 제안되고 있다. 하지만, 다수의 도메인 쌍들이 상호작용에 기여하는 정도를 정밀하게 반영하는 계산 기법은 드문 실정이다. 본 논문에서는 단백질 상호작용에 있어 도메인 조합 쌍의 상호작용 영향력을 수치화하여 반영한 상호작용 중요도 행렬을 고안하고 이를 기반으로 한 단백질 상호작용 예측 시스템을 구현한다. 일반적인 도메인 조합 기법과 달리, 상호작용 중요도 행렬에서는 상호작용을 위한 도메인간의 협업 확률이 고려된 Weighted 도메인 조합과, 다수의 Weighted 도메인 조합 중 실제 상호작용 주체가 될 확률을 도메인 조합 쌍의 힘(Domain Combination Pair Power, DCPPW)으로 수치화한다. DIP과 IntAct에서 얻어온 S. cerevisiae의 단백질 상호작용 데이터와 Pfam-A 도메인 정보를 사용한 정확도 검증 결과, 평균 63%의 민감도와 94%의 특이도를 확인하였으며, 학습집단의 증가에 따른 안정적인 예측 정확도 향상을 보였다. 본 논문에서 구현한 예측 시스템과 학습 데이터는 웹(http://code.google.com/p/prespi)을 통하여 내려 받을 수 있다.

    영어초록

    Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 31일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:33 오전