• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

로그-정규분포와 파레토 합성 분포의 임계점 추정 (Threshold estimation for the composite lognormal-GPD models)

16 페이지
기타파일
최초등록일 2025.06.27 최종저작일 2016.08
16P 미리보기
로그-정규분포와 파레토 합성 분포의 임계점 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 29권 / 5호 / 807 ~ 822페이지
    · 저자명 : 김보배, 노지숙, 백창룡

    초록

    LN-GPD 합성 분포는 몸통부분은 로그-정규분포를 두터운 꼬리에 대해서는 GPD분포를 따르도록 합성한 분포로 두터운 몸통과 꼬리를 동시에 가지는 자료를 절삭없이 효율적으로 다룰 수 있는 분포이다.
    하지만 임계점을 포함하고 있기에 최대우도추정량은 매우 불안정함이 잘 알려져 있어 본 논문이서는 이를 극복하기 위해서 임계점을 먼저 추정하고 나머지 모수들에 대해서 따로 추정하는 2단계 추정 방법들에 대해서 살펴보고 그 성능을 비교해 보았다.
    그 결과 동시 추정하는 최대우도추정량의 경우 불안정한 추정이 GPD 분포의 꼬리 지수에서 두드러 졌으며 임계점에 대해서는 비교적 잘 추정함을 알 수 있었다. 이와 반대로 여러 비모수적인 방법들은 꼬리 지수는 만족스럽게 잘 추정하였으나 임계점의 경우 편의가 있음을 관찰할 수 있었다. 실증자료 분석을 위해 2단계 추정법을 이스라엘 은행의 콜센터에서 수집한 서비스 시간에 대한 자료에 적합해 보았으며 그 결과 LN-GPD 합성 분포를 사용하는 것이 로그-정규분포 혹은 GPD 분포 단독으로 사용하는 것보다 자료의 손실도 없이 더 좋은 적합도를 보임을 알 수 있었다.

    영어초록

    The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:24 오후