• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합 (Medical Image Registration by Combining Gradient Vector Flow and Conditional Entropy Measure)

6 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2010.08
6P 미리보기
기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 17권 / 4호 / 303 ~ 308페이지
    · 저자명 : 이명은, 김수형, 김선월, 임준식

    초록

    본 논문에서는 기울기 벡터장과 조건부 엔트로피를 결합한 의료영상 정합 방법을 제안한다. 정합 방법은 조건부 확률의 엔트로피에 기반한 측도를 수행한다. 먼저 공간적 정보를 얻기 위해 윤곽선 정보의 방향을 제공하는 기울기 정보인 기울기 벡터장을 계산한다. 다음으로 주어진 두 영상에서 픽셀의 밝기정보와 에지정보를 결합하여 조인트 히스토그램을 계산하여 조건부 엔트로피를 구하고, 이것을 두 영상의 정합측도로 사용한다. 제안된 방법의 성능평가를 위해 자기공명 영상과 변환된 컴퓨터단층촬영 영상에 기존 방법인 상호정보기반의 측도, 조건부 엔트로피만을 사용한 측도와 비교 실험을 수행한다. 실험결과로부터 제안한 방법이 기존의 최적화 방법들 보다 더 빠르고 정확한 정합임을 알 수 있다.

    영어초록

    In this paper, we propose a medical image registration technique combining the gradient vector flow and modified conditional entropy. The registration is conducted by the use of a measure based on the entropy of conditional probabilities. To achieve the registration, we first define a modified conditional entropy (MCE) computed from the joint histograms for the area intensities of two given images. In order to combine the spatial information into a traditional registration measure, we use the gradient vector flow field. Then the MCE is computed from the gradient vector flow intensity (GVFI) combining the gradient information and their intensity values of original images. To evaluate the performance of the proposed registration method, we conduct experiments with our method as well as existing method based on the mutual information (MI) criteria. We evaluate the precision of MI- and MCE-based measurements by comparing the registration obtained from MR images and transformed CT images. The experimental results show that the proposed method is faster and more accurate than other optimization methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:42 오전