PARTNER
검증된 파트너 제휴사 자료

정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측 (ELM based Short-term Water Demand Prediction for Effective Operation of Water Treatment Plant)

9 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2009.09
9P 미리보기
정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국조명.전기설비학회
    · 수록지 정보 : 조명.전기설비학회논문지 / 23권 / 9호 / 108 ~ 116페이지
    · 저자명 : 최기선, 이동훈, 김성환, 이경우, 전명근

    초록

    본 논문에서는 단기 물 수요 예측에 대한 모델구현을 위해 MLP의 과도학습 문제를 해결할 수 있고 빠른 학습이 가능한 ELM 기반 단기 물 수요 예측 알고리즘을 제안한다. 제시된 알고리즘의 검증을 위해 2007년도와 2008년도 충남지역 광역상수도인 A정수장에서 취득된 데이터를 분석하여 알고리즘 구현의 정확도 분석에 사용하였다. 실험 결과 MLP모델은 MAPE가 5.82[%]인 반면, 제안된 방법인 ELM 기반 모델은 5.61[%]로 성능이 향상된 것으로 나타났다. 또한, MLP모델은 학습에 소요된 시간이 7.57초인 반면, ELM 기반 모델은 0.09초로 빠른 학습이 가능함을 알 수 있었다. 따라서 제안된 ELM 기반 알고리즘은 정수장의 효율적 운영을 위한 단기 물 수요 예측에 활용할 수 있음을 보였다.

    영어초록

    In this paper, we develop an ELM(Extreme Learning Machine) based short-term water demand prediction algorithm which solves overfitting problem of MLP(Multi Layer Perceptron) and has quick training time. To show effectiveness of proposed method, we analyzed time series data collected in A water treatment plant at Chung-Nam province during 2007~2008 years and used the selected data for the verification of developed algorithm. According to the experimental results, MLP model showed 5.82[%], but the proposed ELM based model showed 5.61[%] with respect to MAPE, respectively. Also, MLP model needed 7.57s training time, but ELM based model was 0.09s. Therefore, the proposed ELM based short-term water demand prediction model can be used to operate the water treatment plant effectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“조명.전기설비학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 13일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:45 오후