• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축 (Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation)

12 페이지
기타파일
최초등록일 2025.06.22 최종저작일 2009.09
12P 미리보기
다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축
  • 미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회 논문집B / 29권 / 5호 / 397 ~ 408페이지
    · 저자명 : 정대일

    초록

    본 연구에서는 다지점의 일단위 강수량을 동시에 모의할 수 있는 추계학적 강수모의모형을 제시하였다. 각 지점의 강수발생은 무강수 기간에 대해 고차를 허용하는 혼합차수 마코프 모형을 이용하였으며, 강수량은 Anscombe 잔차와 감마분포를 이용하여 모의하였다. 다지점에 대한 강수발생과 강수량의 공간적 상관관계는, 상관관계를 가진 랜덤자료를 생성하여 재현하였다. 구축된 강수모의모형을 이용하여 우리나라 중부지역에 위치한 17개 관측지점의 강수량을 모의하고 모의정확성을 검토하였다. 검증에 필요한 통계값들은 50번의 반복실행에 의해 생성된 강수량 시계열로부터 추정하여 제시하였다. 검토결과, 강수모의모형이 관측강수의 강수일수, 강수 지속기간, 무강수 지속기간, 강수일의 평균강수량과 표준편차 등을 비교적 잘 모의하였다. 최대 강수 지속일과 무강수 지속일의 50번 반복실행의 평균값의 RMSE는 관측자료 평균값의 약 23% 정도, 100년빈도와 200년빈도의 강수량의 RMSE는 관측자료 평균값의 약 17% 정도에 달하는 것으로 확인되었다. 강우발생과 강우량에 대한 공간적 상관관계는 비교적 정확히 재현하고 있음을 확인하였다.

    영어초록

    In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회 논문집B”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:12 오전