PARTNER
검증된 파트너 제휴사 자료

음의 연관성 규칙 생성을 위한 음의 기여 순수 신뢰도의 제안 (Negatively attributable and pure confidence for generation of negative association rules)

10 페이지
기타파일
최초등록일 2025.06.20 최종저작일 2012.09
10P 미리보기
음의 연관성 규칙 생성을 위한 음의 기여 순수 신뢰도의 제안
  • 미리보기

    서지정보

    · 발행기관 : 한국데이터정보과학회
    · 수록지 정보 : 한국데이터정보과학회지 / 23권 / 5호 / 939 ~ 948페이지
    · 저자명 : 박희창

    초록

    데이터 마이닝 기법들 중에서 가장 많이 활용되고 있는 연관성 규칙은 방대한 데이터베이스에서 항목간의 관계를 흥미도 측도에 의해 명확히 수치화함으로써 그들간의 관련성을 표시해주는 기법이다. 양의 연관성 규칙 마이닝이 임의의 한 항목이 발생하면 다른 항목도 발생한다는 규칙을 생성하기 위한 기법인 반면에, 음의 연관성 규칙은 어느 항목이 발생하면 다른 항목은 발생하지 않는다는 규칙을 찾아내는 기법이다. 음의 연관성 규칙은 양의 연관성 규칙의 활용과 마찬가지로 고객의 구매 경향 및 마케팅 정책을 제시할 수 있고 교차판매와 매장 진열 등과 같이 타겟 마케팅에 활용 가능하다. 양의 연관성 규칙에 음의 연관성 규칙을 추가하게 되면 어떤 제품을 판매하기 위해서는 그 제품만 마케팅 하는 것뿐만 아니라 더 나아가 그 제품이 아닌 어느 제품을 마케팅 하는 것이 필요한지를 판단할 수 있다. 본 논문에서는 기존의 음의 신뢰도의 단점을 보완할 수 있는 음의 기여 순수 신뢰도를 제안한 후, 이에 대해 흥미도 측도가 가져야 할 조건들을 조사하였으며, 예제 데이터를 활용하여 음의 기여 순수 신뢰도의 유용성을 고찰하였다.

    영어초록

    The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between items in a massive database based on the interestingness measures such as support, confidence, lift, etc. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control.In general, association rule technique generates the rule, ’If A, then B.’, whereas negative association rule technique generates the rule, ’If A, then not B.’, or ’If not A, then B.’. We can determine whether we promote other products in addition to promote its products only if we add negative association rules to existing association rules. In this paper, we proposed the negatively attributable and pure confidence to overcome the problems faced by negative association rule technique, and then we checked three conditions for interestingness measure. The comparative studies with negative confidence, negatively pure confidence, and negatively attributable and pure confidence are shown by numerical examples. The results show that the negatively attributable and pure confidence is better than negative confidence and negatively pure confidence.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국데이터정보과학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 31일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:29 오후