PARTNER
검증된 파트너 제휴사 자료

단어 빈도와 α-cut에 의한 연관 웹문서 분류를 이용한 추천 시스템 (Recommendation System using Associative Web Document Classification by Word Frequency and α-Cut)

8 페이지
기타파일
최초등록일 2025.06.17 최종저작일 2008.01
8P 미리보기
단어 빈도와 α-cut에 의한 연관 웹문서 분류를 이용한 추천 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 8권 / 1호 / 282 ~ 289페이지
    · 저자명 : 정경용, 하원식

    초록

    협력적 필터링을 개선하기 위하여 많은 기술들이 개발되고 실용화되었으나 아이템의 연관 관계를 정확하게 반영하지는 못한다. 본 논문에서는 협력적 필터링의 문제점을 보완하기 위하여 단어 빈도와 α-cut에 의한 연관 웹문서 분류를 이용한 추천 시스템을 제안한다. 제안된 방법은 형태소 분석을 통한 웹문서에서 단어를 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘을 이용해서 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 적용한다. 그리고 연관 규칙 하이퍼그래프 분할을 이용하여 연관 단어간의 유사도를 계산한다. 마지막으로 유사 클래스를 기반으로 연관 웹문서를 α-cut을 이용하여 분류하고 개선된 코사인 유사도를 이용하여 유사도를 계산한다. 실험 결과 제안한 방법이 기존의 방법들보다 우수함을 확인하였다.

    영어초록

    Although there were some technological developments in improving the collaborative filtering, they have yet to fully reflect the actual relation of the items. In this paper, we propose the recommendation system using associative web document classification by word frequency and a-cut to address the short comings of the collaborative filtering. The proposed method extracts words from web documents through the morpheme analysis and accumulates the weight of term frequency. It makes associative rules and applies the weight of term frequency to its confidence by using Apriori algorithm. And it calculates the similarity among the words using the hypergraph partition. Lastly, it classifies related web document by using a-cut and calculates similarity by using adjusted cosine similarity. The results show that the proposed method significantly outperforms the existing methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 30일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:03 오후