• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

모드 선택 비트를 사용한 필터 캐시 예측기 (Filter Cache Predictor Using Mode Selection Bit)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
13 페이지
기타파일
최초등록일 2025.06.12 최종저작일 2009.09
13P 미리보기
모드 선택 비트를 사용한 필터 캐시 예측기
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - CI / 46권 / 5호 / 1 ~ 13페이지
    · 저자명 : 곽종욱

    초록

    캐시 에너지의 소비 전력을 줄이기 위해 필터 캐시가 제안되었다. 이와 같은 필터 캐시의 사용으로 인해 50% 이상의 전력 사용 감소 효과를 가져왔으나, 상대적으로 시스템 성능은 평균 20% 가량 감소되었다. 필터 캐시의 사용으로 인한 이 같은 성능 감소를 최소화하기 위해서, 여러 가지 형태의 필터 캐시 예측가 제안 되었다. 본 논문에서는 기존에 제안된 주요 필터 캐시 예측 모델들을 소개하며, 각각의 방식에 있어서의 핵심 특징 및 해당 방식의 문제점을 분석한다. 분석 결과, 필터 캐시의 참조 실패를 야기하는 기존 방식의 중요한 문제점을 확인하였으며, 이를 바탕으로 본 논문에서는 개선된 형태의 새로운 필터 캐시 예측기 모델을 제안한다. 제안된 방식은 MSB라 불리는 참조 비트를 고안하여 이를 기존의 필터캐시와 BTB에 새롭게 활용한다. 본 논문에서 제안된 방식의 성능을 검증하기 위해 SimpleScalar 시뮬레이터와 MiBench 응용 프로그램을 활용하여 모의실험을 수행하였다. 실험 결과 제안된 방식은 기존 방식 대비, 필터 캐시 예측 실패율, 필터 캐시 활용률 및 전력 소모량․시간 지연 등 모든 면에서 평균 5%의 성능 향상을 가져 왔다.

    영어초록

    Filter cache has been introduced as one solution of reducing cache power consumption. More than 50% of the power reduction results from the filter cache, whereas more than 20% of the performance is compromised. To minimize the performance degradation of the filter cache, the predictive filter cache has been proposed. In this paper, we review the previous filter cache predictors and analyze the problems of the solutions. As a result, we found main problems that cause prediction misses in previous filter cache schemes and, to resolve the problems, this paper proposes a new prediction policy. In our scheme, some reference bit entries, called MSBs, are inserted into filter cache and BTB, to adaptively control the filter cache access. In simulation parts, we use a modified SimpleScalar simulator with MiBench benchmark programs to verify the proposed filter cache. The simulation result shows in average 5% performance improvement, compared to previous ones.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - CI”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:06 오전