• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

적은 양의 음성 및 텍스트 데이터를 활용한멀티 모달 기반의 효율적인 감정 분류 기법 (Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data)

7 페이지
기타파일
최초등록일 2025.06.07 최종저작일 2024.04
7P 미리보기
적은 양의 음성 및 텍스트 데이터를 활용한멀티 모달 기반의 효율적인 감정 분류 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 13권 / 4호 / 174 ~ 180페이지
    · 저자명 : 신미르, 신유현

    초록

    본 논문에서는 wav2vec 2.0과 KcELECTRA 모델을 활용하여 멀티모달 학습을 통한 감정 분류 방법을 탐색한다. 음성 데이터와 텍스트 데이터를함께 활용하는 멀티모달 학습이 음성만을 활용하는 방법에 비해 감정 분류 성능을 유의미하게 향상시킬 수 있음이 알려져 있다. 본 연구는 자연어처리 분야에서 우수한 성능을 보인 BERT 및 BERT 파생 모델들을 비교 분석하여 텍스트 데이터의 효과적인 특징 추출을 위한 최적의 모델을선정하여 텍스트 처리 모델로 활용한다. 그 결과 KcELECTRA 모델이 감정 분류 작업에서 뛰어난 성능이 보임을 확인하였다. 또한, AI-Hub에 공개되어 있는 데이터 세트를 활용한 실험을 통해 텍스트 데이터를 함께 활용하면 음성 데이터만 사용할 때보다 더 적은 양의 데이터로도 더 우수한성능을 달성할 수 있음을 발견하였다. 실험을 통해 KcELECTRA 모델을 활용한 경우가 정확도 96.57%로 가장 우수한 성능을 보였다. 이는 멀티모달학습이 감정 분류와 같은 복잡한 자연어 처리 작업에서 의미 있는 성능 개선을 제공할 수 있음을 보여준다.

    영어초록

    In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models.
    It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classificationperformance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivativemodels, known for their superior performance in the field of natural language processing, to select the optimal model for effective featureextraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstandingperformance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that theinclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments showthat the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningfulperformance improvements in complex natural language processing tasks such as emotion classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:13 오후