• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크 (Squall: A Real-time Big Data Processing Framework based on TMO Model for Real-time Events and Micro-batch Processing)

11 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2017.01
11P 미리보기
Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 44권 / 1호 / 84 ~ 94페이지
    · 저자명 : 손재기, 김정국

    초록

    최근 다양하고 방대한 양의 데이터를 처리하기 위해 빅데이터의 특성인 5V(Volume, Variety, Velocity, Veracity, Value) 중에서도 속도(Velocity)의 중요성이 강조되면서 대량의 데이터를 빠르고 정확하게 처리하는 기술인 실시간 스트림 처리(Real-time Stream processing)를 위해 많은 연구가 진행되고있다. 본 논문에서는 실시간 빅데이터 처리를 위해 대표적인 실시간 객체 모델인 TMO(Time-triggered Message-triggered Object) 개념을 도입한 Squall 프레임워크를 제시하고, 단일 노드에서 동작하는Squall 프레임워크와 그 동작들에 대해 기술한다. TMO는 작업을 수행할 때, 특정 조건에 대해 실시간으로 처리하는 비주기적인 처리방법과 일정 시간 간격동안 주기적인 처리를 지원하는 객체 모델이다. 따라서Squall 프레임워크는 실시간 빅데이터의 실시간 이벤트 스트림 및 마이크로-배치 처리를 동시에 지원하고, 기존 아파치 스톰과 스파크 스트리밍 대비 상대적으로 우수한 성능을 제공한다. 하지만 Squall은 대부분의프레임워크에서 제공되는 다중 노드에서의 실시간 분산처리를 위한 추가적인 개발이 필요하다. 결론적으로, TMO 모델의 장점은 실시간 빅데이터 처리시 기존 아파치의 스톰이나 스파크 스트리밍의 단점들을 극복할 수 있다. 이러한 TMO 모델은 실시간 빅데이터 처리에 있어 유용한 모델로서의 가능성을 가지고 있다.

    영어초록

    Recently, the importance of velocity, one of the characteristics of big data (5V: Volume, Variety, Velocity, Veracity, and Value), has been emphasized in the data processing, which has led to several studies on the real-time stream processing, a technology for quick and accurate processing and analyses of big data. In this paper, we propose a Squall framework using Time-triggered Messagetriggered Object (TMO) technology, a model that is widely used for processing real-time big data.
    Moreover, we provide a description of Squall framework and its operations under a single node. TMO is an object model that supports the non-regular real-time processing method for certain conditions as well as regular periodic processing for certain amount of time. A Squall framework can support the real-time event stream of big data and micro-batch processing with outstanding performances, as compared to Apache storm and Spark Streaming. However, additional development for processing real-time stream under multiple nodes that is common under most frameworks is needed. In conclusion, the advantages of a TMO model can overcome the drawbacks of Apache storm or Spark Streaming in the processing of real-time big data. The TMO model has potential as a useful model in real-time big data processing.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:15 오후