• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

음성 비식별화 모델과 방송 음성 변조의 한국어 음성 비식별화 성능 비교 (Comparison of Korean Speech De-identification Performance of Speech De-identification Model and Broadcast Voice Modulation)

10 페이지
기타파일
최초등록일 2025.05.16 최종저작일 2023.03
10P 미리보기
음성 비식별화 모델과 방송 음성 변조의 한국어 음성 비식별화 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : (사)한국스마트미디어학회
    · 수록지 정보 : 스마트미디어저널 / 12권 / 2호 / 56 ~ 65페이지
    · 저자명 : 김승민, 박대얼, 최대선

    초록

    뉴스와 취재 프로그램 같은 방송에서는 제보자의 신원 보호를 위해 음성을 변조한다. 음성 변조 방법으로 피치(pitch)를 조절하는 방법이 가장 많이 사용되는데, 이 방법은 피치를 재조절하는 방식으로 쉽게 원본 음성과 유사하게 음성 복원이 가능하다. 따라서 방송 음성 변조 방법은 화자의 신원 보호를 제대로 해줄 수 없고 보안상 취약하기 때문에 이를 대체하기 위한 새로운 음성 변조 방법이 필요하다. 본 논문에서는 Voice Privacy Challenge에서 비식별화 성능이 검증된 Lightweight 음성 비식별화 모델을 성능 비교 모델로 사용하여 피치 조절을 사용한 방송 음성 변조 방법과 음성 비식별화 성능 비교 실험 및 평가를 진행한다. Lightweight 음성 비식별화 모델의 6가지 변조 방법 중 비식별화 성능이 좋은 3가지 변조 방법 McAdams, Resampling, Vocal Tract Length Normalization(VTLN)을 사용하였으며 한국어 음성에 대한 비식별화 성능을 비교하기 위해 휴먼 테스트와 EER(Equal Error Rate) 테스트를 진행하였다. 실험 결과로 휴먼 테스트와 EER 테스트 모두 VTLN 변조 방법이 방송 변조보다 더 높은 비식별화 성능을 보였다. 결과적으로 한국어 음성에 대해 Lightweight 모델의 변조 방법은 충분한 비식별화 성능을 가지고 있으며 보안상 취약한 방송 음성 변조를 대체할 수 있을 것이다.

    영어초록

    In broadcasts such as news and coverage programs, voice is modulated to protect the identity of the informant. Adjusting the pitch is commonly used voice modulation method, which allows easy voice restoration to the original voice by adjusting the pitch. Therefore, since broadcast voice modulation methods cannot properly protect the identity of the speaker and are vulnerable to security, a new voice modulation method is needed to replace them. In this paper, using the Lightweight speech de-identification model as the evaluation target model, we compare speech de-identification performance with broadcast voice modulation method using pitch modulation. Among the six modulation methods in the Lightweight speech de-identification model, we experimented on the de-identification performance of Korean speech as a human test and EER(Equal Error Rate) test compared with broadcast voice modulation using three modulation methods: McAdams, Resampling, and Vocal Tract Length Normalization(VTLN). Experimental results show VTLN modulation methods performed higher de-identification performance in both human tests and EER tests. As a result, the modulation methods of the Lightweight model for Korean speech has sufficient de-identification performance and will be able to replace the security-weak broadcast voice modulation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:32 오전