PARTNER
검증된 파트너 제휴사 자료

불균형 자료의 분류분석에서 샘플링 기법을 이용한 로지스틱 회귀분석 (Logistic Regression with Sampling Techniques for the Classification of Imbalanced Data)

12 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2015.08
12P 미리보기
불균형 자료의 분류분석에서 샘플링 기법을 이용한 로지스틱 회귀분석
  • 미리보기

    서지정보

    · 발행기관 : 한국자료분석학회
    · 수록지 정보 : Journal of The Korean Data Analysis Society / 17권 / 4호 / 1877 ~ 1888페이지
    · 저자명 : 박재신, 방성완

    초록

    로지스틱 회귀분석(logistic regression)은 이항 범주형 자료의 분류분석에서 높은 분류정확도와 유연성을 바탕으로 다양한 분야에서 널리 활용되고 있다. 그러나 소수집단과 다수집단의 개체수가 현저하게 차이나는 불균형 자료(imbalanced data)의 분류분석에서 로지스틱 회귀분석은 다수집단에 편향된 분류함수를 추정하여 대부분의 자료를 다수집단으로 분류함으로써 소수집단의 분류 정확도가 현저히 감소하게 되는 제한사항이 있다. 따라서 로지스틱 회귀분석을 이용한 불균형 자료의 분류분석에서 소수집단의 분류 정확도를 높이기 위하여 본 논문에서는 다양한 샘플링 기법을 이용한 로지스틱 회귀분석 방법론에 대하여 연구하였다. 또한 설명변수(explanatory variable)가 고차원인 불균형 자료의 분류분석에서 잡음변수(noise variables)를 제거하고 중요한 설명변수들을 모형에 선택하기 위하여 라소 로지스틱 회귀분석(lasso logistic regression)에 샘플링 기법을 적용한 방법론에 대해서도 연구하였다. 본 논문에서는 모의실험과 실제자료의 분석을 통하여 분류정확도와 모형의 간결성 측면에서 제안한 방법론의 우수한 성능과 유용성을 확인하였다.

    영어초록

    The logisitic regression is widely used in binary data classification areas with its flexibility and a high level of classification accuracy. However, when analyzing imbalanced data with different class sizes, the classification accuracy in minority class (sensitivity) may drop significantly because logistic regression classifiers is biased toward the majority class so that it classifies almost all observations to majority class. Therefore, we study logistic regression with various sampling technique to increase classification accuracy in minority class. Furthermore, we study lasso logistic regression in analyzing an imbalanced data not only to increase classification accuracy, but also to select important explanatory variables. In this study, we demonstrate the effectiveness of the proposed methods through simulation studies and a real data analysis in terms of classification accuracy and model selection.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of The Korean Data Analysis Society”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 14일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:03 오전