• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선 (Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index)

9 페이지
기타파일
최초등록일 2025.05.13 최종저작일 2016.06
9P 미리보기
Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 19권 / 2호 / 98 ~ 106페이지
    · 저자명 : 박주성, 이원희, 조명희

    초록

    원격탐사는 관찰하고자 하는 지역을 직접 방문하지 않고, 영상만으로도 적은 비용으로 짧은 시간 안에 대상지역을 연구하는데 있어 효율적인 기술이다. 본 연구에서는 가장 최근에 발사된 Landsat-8 OLI(Operational Land Imager) 영상을 이용하여 하천유역의 토지피복분류 정확도를 개선하는 방법을 제안하였다. 제안된 방법 중 첫 번째로 Landsat-8 OLI 영상을 이용하여 정규식생지수인 NDVI(Normalized Difference Vegetation Index)와 정규수분지수 NDWI(Normalized Difference Water Index)를 생성하였다. 두 번째로 원래의 영상에 생성된 NDVI와 NDWI 2개의 밴드를 Layer-Stacking하여 새로운 영상을 만들었다. 마지막으로 기존의 영상과 밴드조합을 적용한 새로운 영상에 각각 MLC(Maximum Likelihood Classification), SVM(Support Vector Machine)의 감독분류를 적용하였다. 하천피복분류를 할 때 정확도를 개선하는데 있어 그 의미가 있으며, 분류결과 MLC 분류방법을 적용하였을 때 약 8% 이상, SVM 분류방법을 적용하였을 때 약 1.6% 정도 개선되었다. 향후 다양한 영상과 밴드조합을 통한 연구가 이루어진다면 보다 나은 의사결정에 도움이 될 것으로 사료된다.

    영어초록

    Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager (OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index (NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 영화 <퍼스트 라이드.> 시사회 초대 이벤트
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 15일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:25 오후