PARTNER
검증된 파트너 제휴사 자료

Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석 (Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability)

9 페이지
기타파일
최초등록일 2025.05.11 최종저작일 2015.01
9P 미리보기
Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 19권 / 1호 / 192 ~ 200페이지
    · 저자명 : 조익성, 권혁숭, 김주만, 김선종, 김병철

    초록

    부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 따라서 이러한 문제점을 극복하기 위해서는 개인별특성을 가진 ECG 데이터를 분석하여 최소한의 특징점을 추출함으로써 그에 따른 패턴을 분류하는 것이 필요하다.
    본 연구에서는 이상 심전도와 같은 다양한 신호를 고려하여 Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석기법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 Q, R, S의 진폭과 위상변화에 따른 8개의 특징점을 추출하였다. 이후 각 특징점의 피크 변화와 형태에 따른 ECG 신호를 분석하고 부정맥유형에 따른 9가지 패턴을 정의하였다. 제안한 방법의 우수성을 입증하기 위해 43개의 MIT-BIH 레코드를 대상으로Normal, PVC, PAC, LBBB, RBBB, Paced Beat의 각 패턴을 분석하였다. 실험결과 9가지 패턴에 대한 검출율은93.72%로 우수하게 나타났다.

    영어초록

    Several algorithms have been developed to classify arrhythmia which rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person’s individual difference. Therefore it is necessary to classify the pattern by analyzing personalized ECG signal and extracting minimal feature. Thus, QRS pattern Analysis of personalized ECG Signal by Q, R, S peak variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and extract eight feature by amplitude and phase variability. Also, we classified nine pattern in realtime through peak and morphology variability. PVC, PAC, Normal, LBBB, RBBB, Paced beat arrhythmia is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 93.72% in QRS pattern detection classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 13일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:00 오후