• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정 (Estimation of Chlorophyll Contents in Pear Tree Using Unmanned Aerial Vehicle-Based-Hyperspectral Imagery)

13 페이지
기타파일
최초등록일 2025.05.08 최종저작일 2023.10
13P 미리보기
무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 39권 / 5호 / 669 ~ 681페이지
    · 저자명 : 강예성, 박기수, 김은리, 정종찬, 류찬석, 조정건

    초록

    과일 나무의 생육을 평가하는 중요한 지표인 엽록소 함량을 추정하는데 비교적 많은 노동력의 투입이요구되고 오랜 시간이 소요되는 기존의 파괴 조사 대신 비파괴적 조사 방식인 원격탐사기술을 적용하기 위한연구가 시도되고 있다. 이 연구에서는 2년(2021, 2022) 간 무인기 기반의 초분광 영상을 이용하여 배나무 잎의엽록소 함량을 비파괴적으로 추정하는 연구를 수행하였다. 영상 처리로 추출된 배나무 캐노피(canopy)의 단일band 반사율은 시간 변화에 따라 불안정한 복사 효과를 최소화하기 위해 밴드비화(band rationing) 되었다. 밴드비(band ratios)를 입력 변수로 머신러닝 알고리즘인 elastic-net, k-nearest neighbors (KNN)과 support vectormachine을 사용하여 추정(calibration, validation) 모델들을 개발하였다. Full band ratios 기반 추정 모델들의 성능과 비교하여 계산 비용 절감과 재현성 향상에 유리한 key band ratios를 선정하였다. 결과적으로 모든 머신러닝모델에서 full band ratios를 이용한 calibration에 coefficient of determination (R2)≥0.67, root mean squared error(RMSE)≤1.22 μg/cm2, relative error (RE)≤17.9%)와 validation에 R2≥0.56, RMSE≤1.41 μg/cm2, RE≤20.7% 성능을비교하였을 때, key band ratios 네 개가 선정되었다. 머신러닝 모델들 사이에 validation 성능에는 비교적 큰 차이가 없어 calibration 성능이 가장 높았던 KNN 모델을 기준으로 삼았으며, 그 key band ratios는 710/714, 718/722,754/758, 758/762 nm가 선정되었다. Calibration에서 R2=0.80, RMSE=0.94 μg/cm2, RE=13.9%와 validation에서R2=0.57, RMSE=1.40 μg/cm2, RE=20.5%를 나타내었다. Validation의 기준으로 한 성능 결과는 배나무 잎 엽록소 함량을 추정하기에 충분하지 않았지만, 앞으로의 연구에 기준이 될 key band ratios를 선정했다는 것에 의미가 있다. 추후 연구에서는 추정 성능을 향상하기 위해 지속적으로 추가 데이터세트를 확보하여 선정된 key bandratios의 신뢰성 검증과 함께 실제 과원에 재현 가능한 추정 모델로 고도화할 필요가 있다.

    영어초록

    Studies have tried to apply remote sensing technology, a non-destructive survey method,instead of the existing destructive survey, which requires relatively large labor input and a long time toestimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees.
    This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves usingunmanned aerial vehicle-based hyperspectral imagery for two years (2021, 2022). The reflectance of thesingle bands of the pear tree canopy extracted through image processing was band rationed to minimizeunstable radiation effects depending on time changes. The estimation (calibration and validation) modelswere developed using machine learning algorithms of elastic-net, k-nearest neighbors (KNN), and supportvector machine with band ratios as input variables. By comparing the performance of estimation modelsbased on full band ratios, key band ratios that are advantageous for reducing computational costs andimproving reproducibility were selected. As a result, for all machine learning models, when calibrationof coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 μg/cm2, relative error(RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 μg/cm2, RE≤20.7% using full band ratios werecompared, four key band ratios were selected. There was relatively no significant difference in validationperformance between machine learning models. Therefore, the KNN model with the highest calibrationperformance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 μg/cm2, RE=13.9%, andvalidation showed R2=0.57, RMSE=1.40 μg/cm2, RE=20.5%. Although the performance results basedon validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningfulthat key band ratios were selected as a standard for future research. To improve estimation performance,it is necessary to continuously secure additional datasets and improve the estimation model byreproducing it in actual orchards. In future research, it is necessary to continuously secure additionaldatasets to improve estimation performance, verify the reliability of the selected key band ratios, andupgrade the estimation model to be reproducible in actual orchards.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:25 오전