• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

확장형 데이터 표현을 이용하는 이진트리의 룰 개선 (Refining Rules of Decision Tree Using Extended Data Expression)

11 페이지
기타파일
최초등록일 2025.04.23 최종저작일 2014.06
11P 미리보기
확장형 데이터 표현을 이용하는 이진트리의 룰 개선
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 18권 / 6호 / 1283 ~ 1293페이지
    · 저자명 : 전해숙, 이원돈

    초록

    유비쿼터스 환경에서 데이터는 빠르게 변하고 새로운 데이터는 시간이 경과함에 따라서 출현한다. 그리고 때로,메모리 공간이 충분하지 않다면, 모든 과거의 데이터를 잃을 수 있다. 그러므로, 과거의 모든 데이터를 잃지 않도록또는 데이터를 처리하기 위해서 룰을 만들고 새로운 데이터와 결합하는 문제를 해결할 필요가 있다 . 이진트리를 만들고 룰을 추출할 때, 각 룰의 중요도는 일반적으로 리프의 클래스의 총 개수로 정해진다. 주어진 데이터에 맞는 최소한의 유한한 상태 억셉터를 찾기 위한 계산 문제는 NP 하드 문제이다. 추출된 룰은 정확하지 않고 정보의 유실이 있다고 가정된다. 이러한 전제조건 때문에, 본 논문은 룰을 개선하기 위한 새로운 접근을 제시한다. 이것은 이전 지식또는 데이터로 된 룰의 중요도를 제어하는 것이다. 룰 개선을 할 때, 본 논문은 다수와 소수 특성을 이용하는 푸루닝방법을 사용하여 다양한 룰을 만들고 룰의 각각의 중요도를 제어하고 성능의 변화를 관찰한다. 본 본문에서 고정된중요도를 갖는 확장된 데이터 표현을 갖는 이진트리 분류기가 사용되었다. 시험 결과는 룰 개선을 위한 새로운 정책을 이용해서 수행한 성능이 더 좋을 수 있음을 보여준다.

    영어초록

    In ubiquitous environment, data are changing rapidly and new data is coming as times passes. And sometimes all ofthe past data will be lost if there is not sufficient space in memory. Therefore, there is a need to make rules andcombine it with new data not to lose all the past data or to deal with large amounts of data. In making decision trees andextracting rules, the weight of each of rules is generally determined by the total number of the class at leaf. Thecomputational problem of finding a minimum finite state acceptor compatible with given data is NP-hard. We assumethat rules extracted are not correct and may have the loss of some information. Because of this precondition. this paperpresents a new approach for refining rules. It controls their weight of rules of previous knowledge or data. In solvingrule refinement, this paper tries to make a variety of rules with pruning method with majority and minority properties,control weight of each of rules and observe the change of performances. In this paper, the decision tree classifier withextended data expression having static weight is used for this proposed study. Experiments show that performancesconducted with a new policy of refining rules may get better.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:40 오후