PARTNER
검증된 파트너 제휴사 자료

쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가 (No-Reference Image Quality Assessment Using Complex Characteristics of Shearlet Transform)

11 페이지
기타파일
최초등록일 2025.04.19 최종저작일 2016.05
11P 미리보기
쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 21권 / 3호 / 380 ~ 390페이지
    · 저자명 : 사이드마흐모드포어, 김만배

    초록

    화질 평가 방법은 그동안 많은 방법이 소개되어 왔다. 특히 우수한 성능을 보여주는 무참조 평가에서 기법에서 발전이 지속되어 왔다. 본 논문에서는 쉬어렛 영역에서 자연영상의 통계적 특성에 기반한 무참조 영상화질 평가 방법을 제안한다. 제안 방법은 쉬어릿 계수의 통계 특성으로부터 왜곡에 민감한 특징을 추출한다. 쉬어렛 변환의 복소수 계수로부터 위상과 크기 특징을 얻어낸다. 또한 쉬어렛 변환은 다양한 스케일로 영상을 분석할 수 있기 때문에, 스케일간의 계수의 의존성에 대한 왜곡의 영향을 분석한다. 화질 예측을 위해서 특징들은 SVM(support vector machine)을 이용하여 영상 왜곡 분류 및 화질 예측에 활용된다. 실험결과는 제안 방법이 주관적 평가와의 높은 상관도를 보여주고, 또한 기존 참조 및 무참조 방법보다 우수한 성능을 보여준다.

    영어초록

    The field of Image Quality Measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in No-Reference (NR) IQM methods. In this paper, a general-purpose NR IQM algorithm is proposed based on the statistical characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from statistical properties of shearlet coefficients. A complex version of the shearlet transform is employed to take advantage of phase and amplitude features in quality estimation. Furthermore, since shearlet transform can analyze the images at multiple scales, the effect of distortion on across-scale dependencies of shearlet coefficients is explored for feature extraction. For quality prediction, the features are used to train image classification and quality prediction models using a Support Vector Machine (SVM). The experimental results show that the proposed NR IQM is highly correlated with human subjective assessment and outperforms several Full-Reference (FR) and state-of-art NR IQMs.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 14일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:09 오전