• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구 (Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA)

7 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2021.02
7P 미리보기
마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 14권 / 1호 / 22 ~ 28페이지
    · 저자명 : 정승환, 김성신

    초록

    화학공정, 기계공정, 발전소와 같은 다변량 공정은 여러 설비들이 복잡하게 연결되어 운영되기 때문에 특정 시스템에 고장이 발생하면 전체 공정에 치명적인 영향을 미칠 수 있다. 또한, 공정 데이터는 불안정한 환경에서 계측되므로, 데이터에 이상치가 포함될 가능성이 크다. 따라서 계측된 데이터의 이상치를 제거하고 시스템의 고장을 사전에 탐지할 수 있는 모니터링 기술이 필수적이다. 본 논문에서는 여러 종류의 공정에서 고장탐지를 수행하기 위해 다이나믹 공정과 다변량 공정 모델에서 생성된 데이터를 이용하였다. 다이나믹 공정은 자기회귀 특성을 가지는 공정을 모델링한 것이고 다변량 공정은 특정 센서의 고장이 발생했을 때 상황을 묘사한 공정이다. 본 논문에서는 두 공정에서 생성된 데이터에 마할라노비스 거리를 이용하여 데이터에 포함된 이상치를 제거한 후, 독립성분분석을 적용하여 고장탐지를 수행하였다. 제안된 방법의 성능 비교를 위해 기존의 단일모델 ICA와 성능을 비교하였다. 실험결과, 제안된 방법이 기존의 ICA 보다 다이나믹 공정의 바이어스 데이터의 경우에 0.84%p, 드리프트 데이터의 경우 6.82%p 성능이 개선되었다. 다변량 공정의 경우 3.78%p 성능이 개선되었으므로, 제안된 방법이 우수한 고장탐지 성능을 보였다.

    영어초록

    Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:09 오전