• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

거래량의 평균회귀성에 대한 실증연구 (Mean Reversion of the Trading Volume)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
38 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2019.05
38P 미리보기
거래량의 평균회귀성에 대한 실증연구
  • 미리보기

    서지정보

    · 발행기관 : 한국재무학회
    · 수록지 정보 : 재무연구 / 32권 / 2호 / 149 ~ 186페이지
    · 저자명 : 채준, 강민

    초록

    본 연구에서는 한국주식시장을 대상으로 거래량의 평균회귀성을 실증하고, 거래량의 평균회귀성에 영향을 미치는 변수들에 대해 분석하였다. 먼저, 거래량의 시계열에 평균회귀성의 전제조건인 자기상관관계가 존재함을 보이고, Phillips and Perron 검정과 KPSS 검정을 통해 거래량의 평균회귀성을 실증하였다. 이를 통해 한국주식시장에서 나타나는 거래량의 중요 특성을 밝히는 한편, 자기상관관계에 대한 연구에 머물러 있던 거래량의 시계열에 대한 연구영역을 확장했다는 의의가 있다. 또한, Ornstein-Uhlenbeck 모델을 사용하여 평균회귀성의 주요한 속성인 평균회귀속도를 도출하고, 회귀분석을 통해 규모가 적을수록, 주가변동성이 적을수록, 개인투자자의 거래비중이 적을수록, 애널리스트의 이익추정 수가 많을수록 평균회귀속도가 증가함을 보여, 이 변수들이 거래량의 평균회귀성에 중요한 영향을 미치고 있음을 실증하였다. 이러한 결과는 동적거래모델(dynamic trading model) 상의 정보거래자의 정보은닉성 거래(stealth trading)와 행동경제학적 설명인 개인투자자의 주목기반 매수경향(attention based buying tendency)이 거래량의 평균회귀성을 설명할 수 있는 근거가 될 수 있음을 보이고 있다.

    영어초록

    This study analyzes the mean reversion of trading volume, which allows us to predict future trading volumes from time-series data. The results have important implications for various related concerns, including the predictability of returns in relation to trading volumes, liquidity, and the use of practical indicators such as the VWAP (volume-weighted average price) and the CGO (capital gains overhang).
    We test the trading volumes of the indices, size-portfolios, and individual stocks on the Korean stock market from 1999 to 2017. All of the sample data are obtained from FnDataGuide. First, we test the autocorrelation of the trading volume. The results show that the trading volume has a positive autocorrelation, and that changes in trading volume have negative autocorrelations. Therefore, we confirm that the trading volume process (unlike the return process) does not follow an independent distribution. As mean reversion implies a correlated time-series, the autocorrelation of trading volumes serves as the premise for the mean reversion of trading volumes. Next, we use the Phillips-Perron test (Phillips and Perron, 1988) and the KPSS test (Kwiatkowski, Phillips, Schmidt, and Shin, 1992) to verify the mean reversion property of the trading volume. The results show that the trading volume of the indices, size-portfolios, and 96% of the individual stocks, all have a mean reversion property on the Korean stock market. In addition, we calculate the mean-reverting speed for each stock by applying the Ornstein–Uhlenbeck model (Uhlenbeck and Ornstein, 1930) to identify the variables that affect the mean reversion property of the trading volume. We regard the mean-reverting speed as a proxy variable that indicates the relative strength of the mean reversion property across sample stocks. This analysis of the mean-reverting speed enables us to confirm which variables affect the mean reversion of the trading volume. Before the regression analysis, we compare the actual mean-reverting duration of the trading volume with the duration calculated by using the Ornstein-Uhlenbeck model, which is our model for estimating the mean-reverting duration of the trading volume. As the implied error of the model has an acceptable scale, we confirm that our Ornstein-Uhlenbeck model can serve as a reasonable model for trading volume.
    The regression results on the mean-reverting speed of each stock shows that the smaller the size, the smaller the stock price volatility. In addition, we find that the smaller the ratio of the individual investors’ trading activity and the higher the number of analysts’ reports, the higher the mean-reverting speed. This set of findings suggests that the mean reversion of the trading volume can be explained by the presence of stealth trading (Kyle, 1985; Admati and Pfleiderer, 1988; Foster and Viswanathan, 1990; Wang, 1994) and by individual investors' attention-based trading (Barber and Odean, 2008). Heterogeneity between investors generates trading volume. This heterogeneity is resolved by opinion-sharing with trades. However, stealth trading by informed investors delays the incorporation of information, and attention-based trading by individual investors gives the trading volume a positive feedback. Thus, the mean-reverting speed of a stock is slower in trading environments where it is easier to hide information, and where individual investors trade more actively. Additionally, we show that the future trading volume can be estimated from its mean-reversion property. If we know the mean-reverting speed, the mean value, and the standard deviation of the trading volume, we can obtain the expected trading volume by applying the Ornstein-Uhlenbeck model.
    This study contributes to the literature in the following four ways. First, and most importantly, it expands research on trading volumes by demonstrating that the volume has a mean reversion property on the Korean stock market. Understanding this property takes us one step beyond making predictions based on the autocorrelation of the trading volume. Second, we find that the future trading volume can be predicted by its mean reversion property. This novel finding helps to expand the knowledge of market dynamics among academics, and it can help practitioners who want to build their positions without causing a serious market impact. Third, we show that the trading volume has a positive autocorrelation in the Korean stock market. Although such autocorrelation of trading volume has been previously studied in the U.S. stock market, it has not been investigated in the Korean stock market. As the scope for applying autocorrelation is wide, we believe that the verification of autocorrelation is also important. Last, we shed light on why the trading volume shows mean-reversion properties. We assess trade sizes, price volatility, the trading activity of individual investors, and the number of analysts’ earnings estimates, all of which influence the mean reversion of the trading volume. All of these factors can be partly explained by stealth trading and the attention-based trading of individual investors.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 19일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:25 오전