PARTNER
검증된 파트너 제휴사 자료

의사결정나무기법을 이용한 건설재해 사전 예측모델 개발 (Prediction Model of Construction Safety Accidents using Decision Tree Technique)

9 페이지
기타파일
최초등록일 2025.03.16 최종저작일 2017.06
9P 미리보기
의사결정나무기법을 이용한 건설재해 사전 예측모델 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국건축시공학회
    · 수록지 정보 : 한국건축시공학회지 / 17권 / 3호 / 295 ~ 303페이지
    · 저자명 : 조예림, 김연철, 신윤석

    초록

    건설 산업 재해 예방을 위한 연구와 노력에도 불구하고최근 7년간 국내 건설업 재해자 수가 꾸준히 증가했다. 건설현장에서 발생하는 재해는 다른 산업군에 비해 강도 높은재해가 발생할 가능성이 크기 때문에 근본적으로 예방할 수있는 방법이 필요하다. 따라서 본 연구에서는 모형에 대한해석이 쉽고 변수의 상호작용 효과 해석이 용이한 의사결정나무 기법을 활용하여 건설재해 예측 모델을 제안하였다.
    제안된 건설 재해 사전 예측 모델의 현장 활용 가능성을 평가하기 위하여 판별분석기법 기반 모델과의 건설 재해 예측정확도를 비교하였다. 검토 결과 판별분석 모델에 비해 의사결정나무 모델의 누적 예측 정확도가 더 높은 것으로 나타났다. 의사결정나무 기법을 이용한 모델은 시간이 지남에 따라데이터가 증가하기 때문에 예측 정확도가 더욱 높아지게 된다. 따라서 본 연구에서 제안된 건설 재해 예측 모델이 건설현장에서 활용된다면 효과적으로 안전 관리를 할 수 있고,건설업 재해율 감소에도 기여할 수 있을 것으로 기대한다

    영어초록

    Over the past 7 years, the number of victims of construction disasters has been gradually increasing. Comparedwith projects in other industries, construction projects are highly exposed to safety risks. For this reason, the researchmethods of predicting and managing the risk of construction disasters are urgently needed that can be applied to aconstruction site. This study aims to propose a prediction model for a construction disaster using the decision treetechnique. The developed the model is reviewed the applicability by evaluating its accuracy based on disaster data.
    The top three of the prediction values obtained from the proposed model were enumerated, and then the cumulativeaccuracy were also calculated. The prediction accuracy was 40 percent for the first value, but the cumulative accuracywas 80 percent. Thus, as more disaster data was accumulated, the cumulative accuracy appeared to be higher. Ifutilized in construction sites, the model proposed in this study would contribute to a reduction in the rate ofconstruction disasters.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국건축시공학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 14일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:45 오전