• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

로지스틱회귀분석을 이용한 코스닥기업의 부실예측모형 연구 (Failing Prediction Models of KOSDADQ Firms by using of Logistic Regression)

7 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.03
7P 미리보기
로지스틱회귀분석을 이용한 코스닥기업의 부실예측모형 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 9권 / 3호 / 305 ~ 311페이지
    · 저자명 : 박희정, 강호정

    초록

    기업부실 및 그에 따른 도산은 직접적으로는 주주, 종업원, 채권자 등에게 막대한 피해를 주고, 더 나아가 금융기관의 부실화를 초래하는 등 파급효과가 매우 크다. 코스닥 시장에 상장된 기업들은 기술력은 높으나 사업화 가능성이 낮고 자본력이 취약하여 부실화 가능성이 높다. 이에 본 연구는 코스닥기업들 가운데 건전기업과 부실기업을 표본으로 삼아 로지스틱 회귀분석을 이용하여 부실예측모형을 개발하고 검증하였다. 본 연구결과는 첫째, 연도별 모형의 분류정확도는 76.5%~77.5%로 나타났으며. 평균모형의 분류정확도는 70.6%~83.4%로 나타났다. 이들 모형 중 분류정확도가 가장 높은 모형은 부실 3년, 2년, 1년 전 평균모형으로 83.4%이다. 둘째, 분류정확도가 가장 높은(부실 3년, 2년, 1년 전) 모형을 선정하여 확인 표본을 대상으로 검증한 결과 예측정확도가 부실 3년 전 71.7%, 부실 2년 전 75.0%, 부실 1년 전 90.0%로 부실 3년 전에서 부실 1년 전으로 갈수록 높은 예측력을 보이고 있다. 특히 부실 1년 전의 경우 90.0%의 높은 예측정확도를 나타내 개발한 모형이 우수한 것으로 판단된다.

    영어초록

    The bankruptcy in Korea affects to all stakeholder of firms. Companies listed in KOSDAQ have high technology but the possibilities for success of business are low. The purpose of this study is to develop and to applicate falling prediction model of KOSDAQ firms using logistic regression analysis. The results of this study are as follows. First, the accuracy of classification of the models by years was between 76.5% and 77.5%, and that of the mean model was between 70.6% and 83.4%. Among the models, the mean model of -three years, -two years, and -one year was highest in the accuracy of classification (83.4%). Second, when the mean model of -three year, -two years, and -one years, the highest model in accuracy of classification, was selected to be verified on validation samples, the accuracy of prediction increased from -three years to -one year (71.7% for -three years, 75.0% for -two years, 90.0% for -one year). In particular, the accuracy of prediction for -one year was sufficiently high (90.0%), indicating the superiority of developed model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:37 오전