• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

주파수 특성 기저벡터 학습을 통한특정화자 음성 복원 (Target Speaker Speech Restoration via Spectral bases Learning)

8 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2009.03
8P 미리보기
주파수 특성 기저벡터 학습을 통한특정화자 음성 복원
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 3호 / 179 ~ 186페이지
    · 저자명 : 박선호, 최승진, 유지호

    초록

    본 논문에서는 학습이 가능한 특정화자의 발화음성이 있는 경우, 잡음과 반향이 있는 실 환경에서의 스테레오 마이크로폰을 이용한 특정화자 음성복원 알고리즘을 제안한다. 이를 위해 반향이 있는 환경에서 음원들을 분리하는 다중경로 암묵음원분리(convolutive blind source separation, CBSS)와 이의 후처리 방법을 결합함으로써, 잡음이 섞인 다중경로 신호로부터 잡음과 반향을 제거하고 특정화자의 음성만을 복원하는 시스템을 제시한다. 즉, 비음수 행렬분해(non-negative matrix factorization, NMF) 방법을 이용하여 특정화자의 학습음성으로부터 주파수 특성을 보존하는 기저벡터들을 학습하고, 이 기저벡터들에 기반 한 두 단계의 후처리 기법들을 제안한다. 먼저 본 시스템의 중간단계인 CBSS가 다중경로 신호를 입력받아 독립음원들을(두 채널) 출력하고, 이 두 채널 중 특정화자의 음성에 보다 가까운 채널을 자동적으로 선택한다(채널선택 단계). 이후 앞서 선택된 채널의 신호에 남아있는 잡음과 다른 방해음원(interference source)을 제거하여 특정화자의 음성만을 복원, 최종적으로 잡음과 반향이 제거된 특정화자의 음성을 복원한다(복원 단계). 이 두 후처리 단계 모두 특정화자 음성으로부터 학습한 기저벡터들을 이용하여 동작하므로 특정화자의 음성이 가지는 고유의 주파수 특성 정보를 효율적으로 음성복원에 이용 할 수 있다. 이로써 본 논문은 CBSS에 음원의 사전정보를 결합하는 방법을 제시하고 기존의 CBSS의 분리 결과를 향상시키는 동시에 특정화자만의 음성을 복원하는 시스템을 제안한다. 실험을 통하여 본 제안 방법이 잡음과 반향 환경에서 특정화자의 음성을 성공적으로 복원함을 확인 할 수 있다.

    영어초록

    This paper proposes a target speech extraction which restores speech signal of a target speaker form noisy convolutive mixture of speech and an interference source. We assume that the target speaker is known and his/her utterances are available in the training time. Incorporating the additional information extracted from the training utterances into the separation, we combine convolutive blind source separation(CBSS) and non-negative decomposition techniques, e.g., probabilistic latent variable model. The nonnegative decomposition is used to learn a set of bases from the spectrogram of the training utterances, where the bases represent the spectral information corresponding to the target speaker. Based on the learned spectral bases, our method provides two postprocessing steps for CBSS. Channel selection step finds a desirable output channel from CBSS, which dominantly contains the target speech. Reconstruct step recovers the original spectrogram of the target speech from the selected output channel so that the remained interference source and background noise are suppressed. Experimental results show that our method substantially improves the separation results of CBSS and, as a result, successfully recovers the target speech.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 15일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:15 오전